Can volunteer water monitors make a difference, a case from Lake Wedowee

by | Aug 26, 2009 | Uncategorized

 

(Article as pdf – for printing)

Residents of Lake Wedowee, in Randolph County, became concerned about the health of their lake more than a decade ago, and many members of the Lake Wedowee Property Owners (LWPOA) became certified water monitors under the Alabama Water Watch Program (AWW). Water monitoring began in 1998, and since then the LWPOA has submitted 1,179 water chemistry records and 359 bacteria records to the AWW statewide online database. LWPOA volunteer monitors currently test water quality at 19 sites on the lake and its two primary tributaries, the Big Tallapoosa and Little Tallapoosa rivers (see map below).

LWPOA water monitoring sites on Lake Wedowee and the Big Tallapoosa and Little Tallapoosa rivers in Randolph County. Green dots are active monitoring sites, and red dots are inactive sites (map taken from the AWW website, www.alabamawaterwatch.org).

Spurred by a growing concern about bacterial contamination of the lake from several possible point and nonpoint sources (including septic systems, waste water treatment facilities, campgrounds, and nonpoint source runoff from poultry and cattle rearing operations), several LWPOA monitors received training and certification in bacteriological monitoring from AWW in March 2006. Charles ‘Sut’ Smith, former LWPOA board member and Coordinator of the Upper Tallapoosa River Basin Clean Water Partnership Committee (UTRBCWPC), and Jack Duncan, LWPOA board member and LWPOA Water Testing Committee Chairman, drafted a bacteriological sampling plan to test for levels of E. coli at 22 sites throughout the Lake Wedowee Watershed (see map below).  The initial phase included bacteria testing on Lake Wedowee proper from the dam forebay back to upper lake boundaries.  The lake water was generally E-coli free and met ADEM’s Water Criteria for Swimming and Other Whole Body Water Contact Sports (Pathogens).

The second phase of E-Coli testing focused on the two rivers and tributary streams feeding Lake Wedowee. This phase was done as a project of the UTCWPC to evaluate non-point source pollution entering the watershed streams. More than 100 samples, in triplicate, were collected and analyzed using the AWW Bacteriological Monitoring protocol throughout the 2006 growing season (April-October).  The following results from obtained from the study:

  • the highest E. coli levels (up to 8,250 colonies/100 mL of water) occurred in the Little Tallapoosa River just upstream of the Alabama-Georgia state line,
  • high levels of E. coli were also measured in Wedowee Creek (up to 2,786 colonies/100 mL of water) and in the Tallapoosa River (up to 506 colonies/100 mL of water), and
  • the sources appeared to be from nonpoint source runoff because high levels of E. coli were detected following rainfall/runoff events.

Map showing sites in the Lake Wedowee Watershed that had harmful levels of E. coli during the 2006 growing season (sites in red had > 600 colonies/100 mL of water, sites in yellow had 200-600 colonies/100 mL, sites in green had < 200 colonies/100mL).

 After completion of this tremendous effort and collection of results showing the bacteriological ‘hotspots’ in the Lake Wedowee Watershed, Sut Smith communicated his findings to ADEM. Missy Middlebrooks, ADEM Senior Environmental Scientist, invited representatives from the Georgia Environmental Protection Division (GA EPD) to a meeting in Wedowee to discuss the citizen findings in November, 2006. At the Upper Tallapoosa River Basin Clean Water Partnership meeting, Sut Smith presented the bacteriological findings of periodic high E. coli concentrations in the Little Tallapoosa to representatives from the Georgia Environmental Protection Division (GA EPD). The extremely high concentrations recorded at the state line inspired the GA EPD to action.

After the meeting, GA EPD, Carroll County, the City of Carrollton and the Rolling Hills RC & D Council initiated action to apply for federal 319(h) funds to address the bacterial contamination problem in the Little Tallapoosa River.  The GA EPD awarded a $900,000 grant in January of this year for a three-year watershed project to clean up the Little Tallapoosa River. The project addresses septic tank repair/replacement/maintenance, strategic installation of on-the-ground agricultural best management practices on impaired stream segments, and follow-up water quality monitoring to verify reductions in fecal coliform concentrations (including E. coli) in the river and its tributaries. Representatives from the Rolling Hills RC & D Council recently returned to Wedowee and gave a presentation on the watershed project, and remarked that one reason for doing this project was the citizen bacterial monitoring conducted by LWPOA, along with coordination with ADEM and the Upper Tallapoosa River Basin Clean Water Partnership.

IMG_0548

LWPOA water monitors undergoing periodic recertification in AWW water monitoring techniques on Jack Duncan’s pier.

For details on the LWPOA watershed-level bacteria study and lake water quality monitoring, go online to www.alabamawaterwatch.org (click Monitor Resources, then Publications to see the group’s publication titled Citizen Volunteer Water Quality Monitoring of Alabama’s Reservoirs – Lake Wedowee), to www.globalwaterwatch.org (read about LWPOA in a World Wildlife Fund-sponsored publication titled Community-Based Water Quality Monitoring Data Credibility and Applications), and to www.twp.auburn.edu (click Click here to go to original TWP Project to read about LWPOA side-by-side water monitoring with Auburn University researchers in the TWP Final Report: 2006-2007). Thanks to a good, data-rich nudge from our ever-vigilant AWW water monitors, the waters of Lake Wedowee and the Tallapoosa River are being cleaned up so that we can all safely enjoy them – GREAT JOB LWPOA and UTRBCWP!

 

Contact

Auburn University Water Resources Center
ALFA Agricultural Services and Research Building
961 S Donahue Drive
Auburn, AL 36840

1-888-844-4785