The Impacts of Climate Change and Climate Variability on Erosion Index in the Southeastern United States

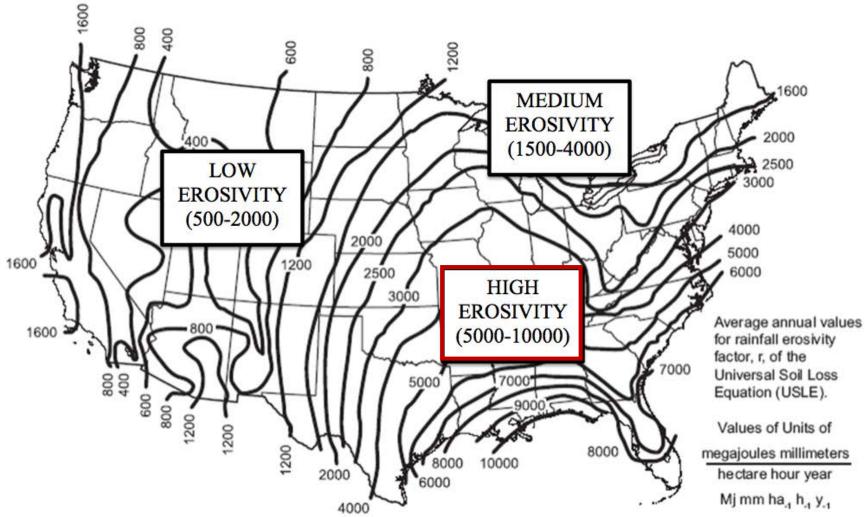
Ryan McGehee, E.I.

Puneet Srivastava, Ph.D., P.E.

Motivation

"As climate changes, the main changes in precipitation will likely be in the intensity, frequency, and duration of events, but these characteristics are seldom analyzed in observations or models."

Bulletin of the American Meteorological Society September 2003



INTRODUCTION

Study Area

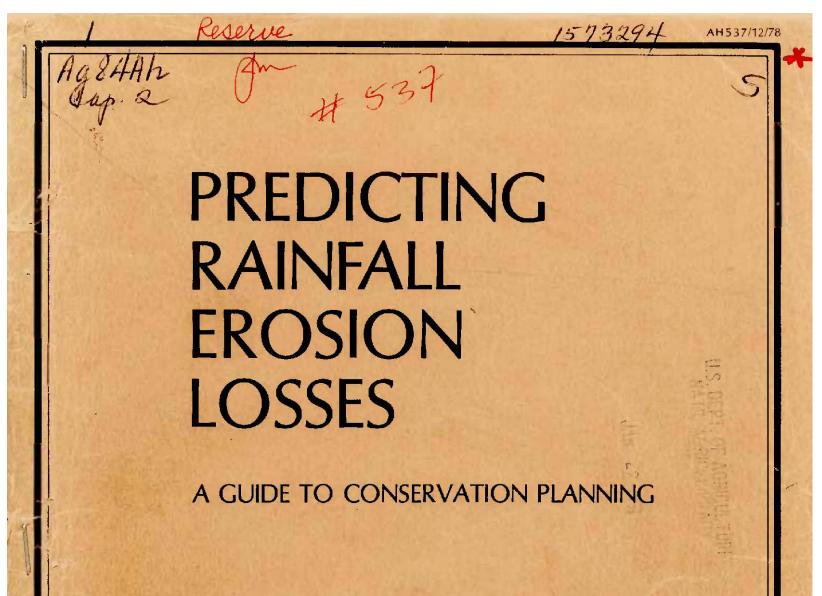
Erosion Index (EI)

Definition: a statistical reflection of how total kinetic energy (E) and peak intensity (I30) interact within a storm

Calculation Requirements:

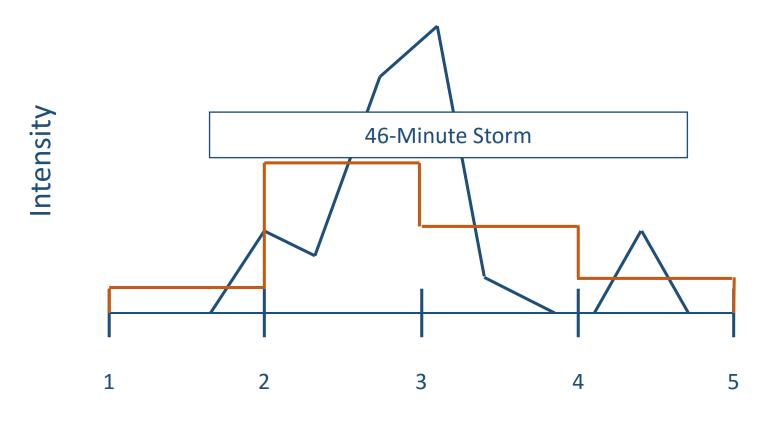
- High Temporal Resolution Precipitation Data
- Ideally Fixed-Intensity Data not Fixed-Interval Data

$$e_{t,t+1} = 916 + 331 \log_{10} i_{t,t+1}$$


$$E_s = \frac{\sum_{t=1}^{m} e_{0,t} + e_{t,t+1} + \dots + e_{m-1,m}}{100}$$

$$for \begin{cases} i \leq 3.0 \text{ inches } h^{-1} \\ I_{30} \leq 2.5 \text{ inches } h^{-1} \end{cases}$$

$$EI = \sum_{s=1}^{n} (E_s \cdot I_{30s}) + (E_{s+1} \cdot I_{30s+1}) + \dots + (E_n \cdot I_{30n})$$


AH537 / Wischmeier and Smith 1978

Fixed-Intensity vs. Fixed Interval

15-Minute Intervals

METHODOLOGY

Observed Change

Observed Variability

Projected Climate

Data Processing

Raw Data

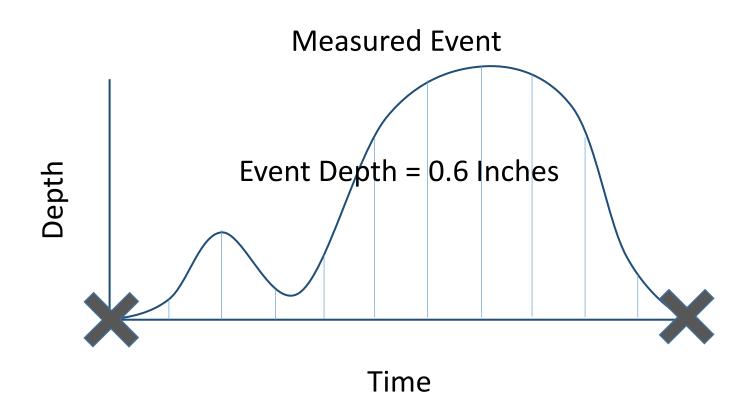
- NOAA NCDC DSI-3260 (>600 Quarter-Hour Stations)
- Gaps and Accumulations (Two Types of Data Problems)
- More than 13,000 Station Years and 2.5 Million Storms
- Storm Separation
- Station Screening
- Water Balance
- El Calculation
- Statistical Analysis

Storm Separation

IDENTICAL to AH537

 A break between storms is a period of 6 hours or more with less than 0.5 inches of precipitation.

DIFFERENT from AH537

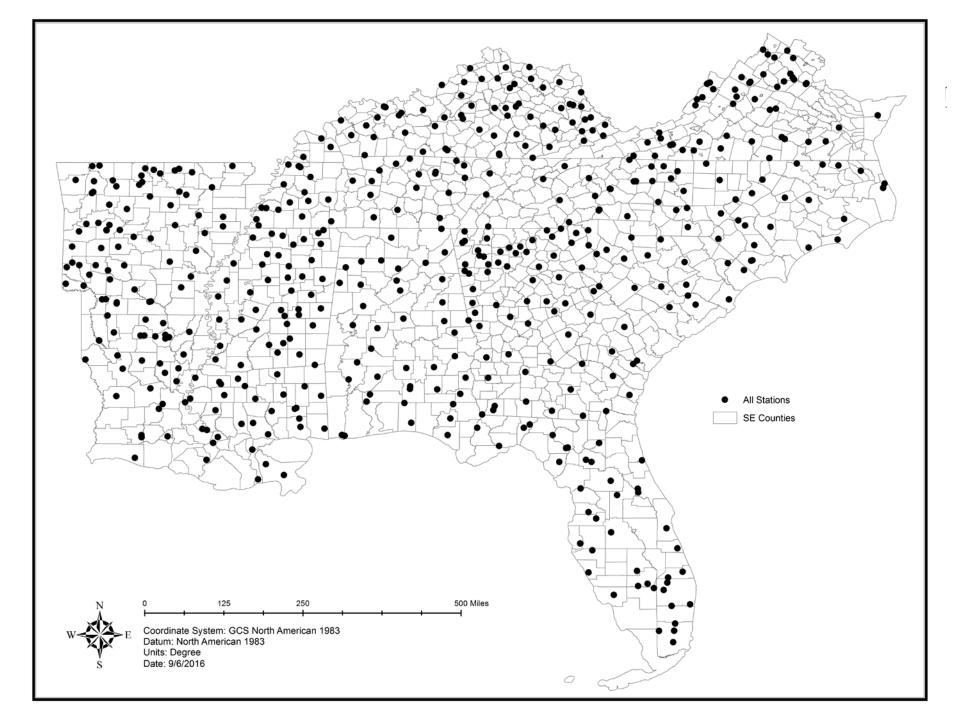

- AH537 omits storms less than 0.5 inches unless the intensity is at least 0.95 inches per hour.
- Data includes accumulations (definition next slide)
- Accumulations are assumed to be separate storms

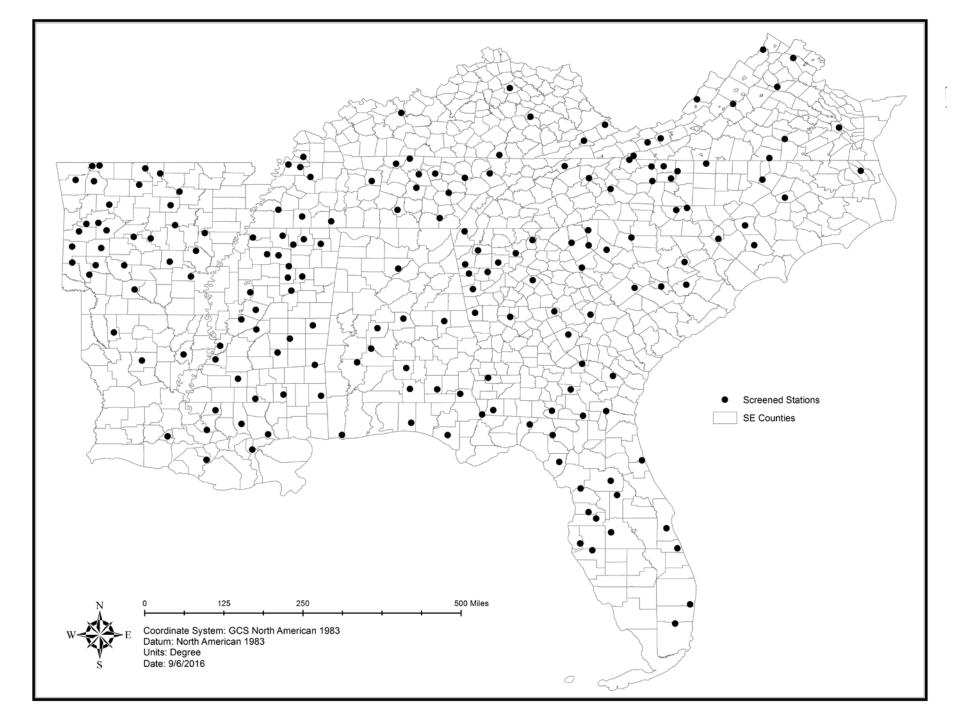
Bands of precipitation, although technically part of the same storm system, are treated as separate systems. So, it is uncommon to see durations longer than 48 hours using this method.

Accumulations

An event with known beginning and ending times and total depth without knowledge of distribution.

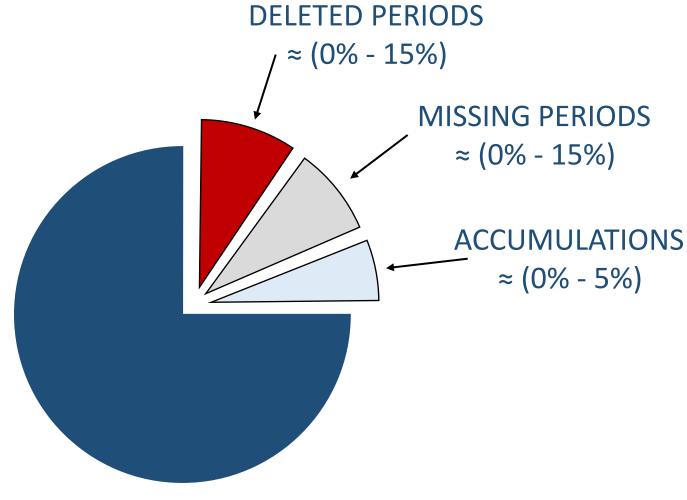
Station Screening

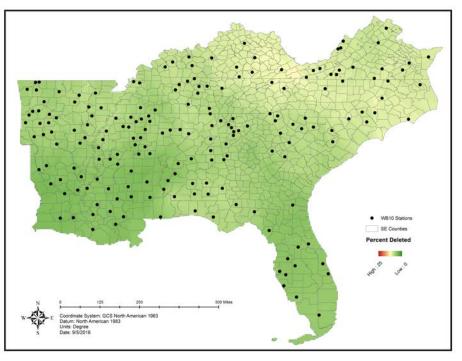


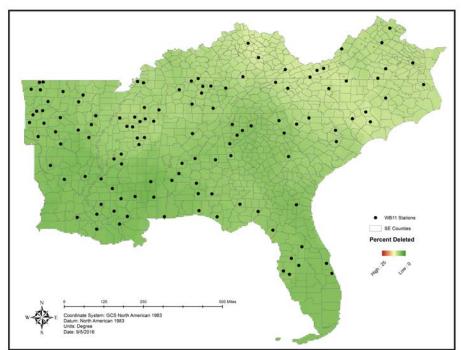

Qualitative Screening

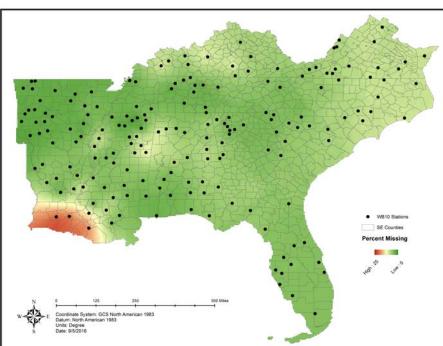
- Check for erroneous values (inherent and introduced)
- Less than 0.1% of data (and total depth) removed
- Insignificant impact on results

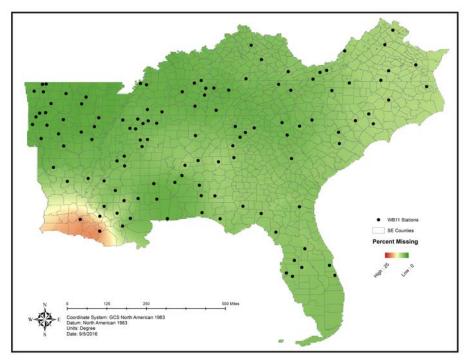
Quantitative Screening

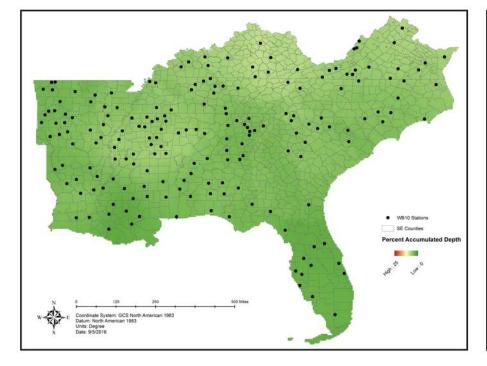

- Reduce 'gaps' in the data (missing and deleted periods)
- Determined by water balance performance
- Significant impact on results
- About 60% of more than 600 stations do not meet the minimum quantity to be used in this study
- NOAA uses a similar method for climate normals

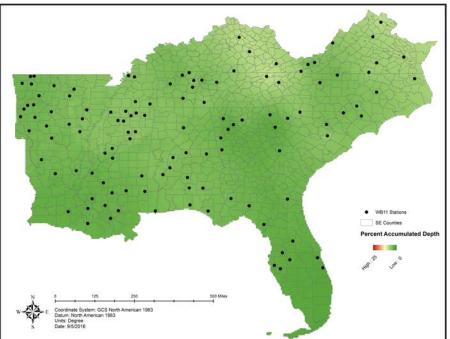

Water Balance

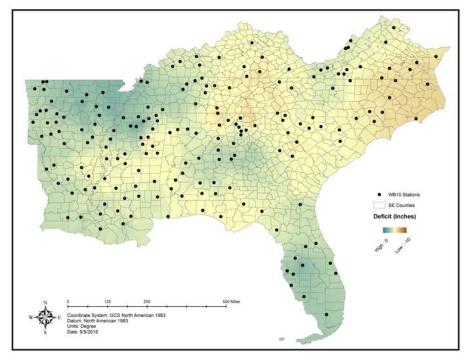


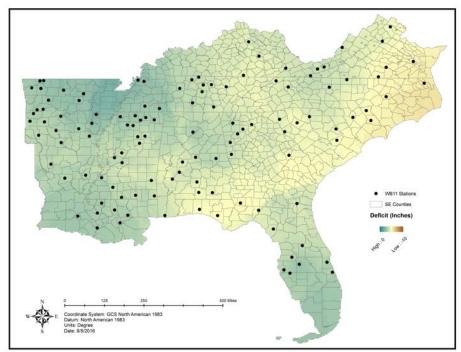


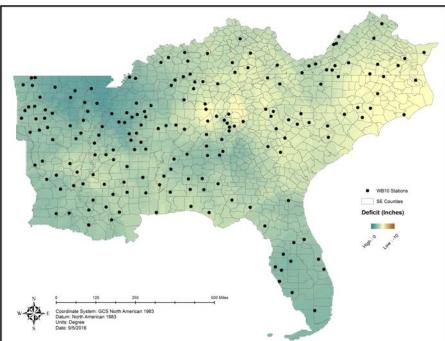

MEASURED STORM EVENTS (>75%)

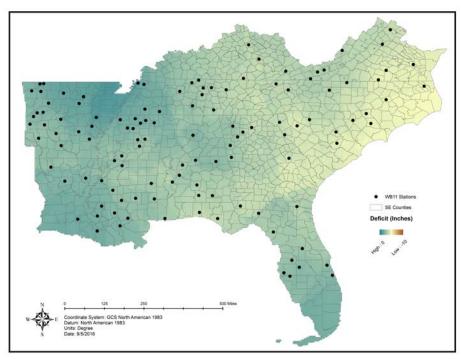

SCREENING	MEAN		ME	MEDIAN		DEV.	NUMBER OF
METHOD ID	-	+	-	+	-	+	STATIONS
20.10.60	-7.92	-6.03	-8.23	-5.81	3.96	4.15	286
20.11.30	-7.05	-5.27	-7.40	-5.56	4.09	4.13	179
20.11.60	-7.05	-5.27	-7.40	-5.56	4.09	4.13	179
20.11.90	-6.93	-5.17	-7.30	-5.47	4.04	4.12	178
25.10.60	-7.41	-5.40	-7.86	-5.26	3.45	3.53	174
25.11.60	-6.67	-4.99	-6.49	-4.65	3.42	3.42	82
30.10.60	-6.58	-4.77	-6.35	-4.59	2.99	2.99	73
20.12.60	-5.40	-4.32	-4.88	-3.57	3.44	3.53	34
30.11.60	-6.48	-4.86	-6.75	-4.77	2.82	2.83	26

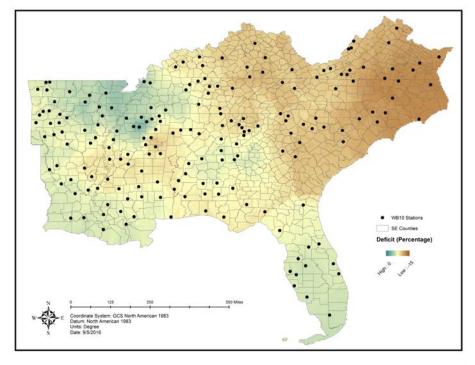


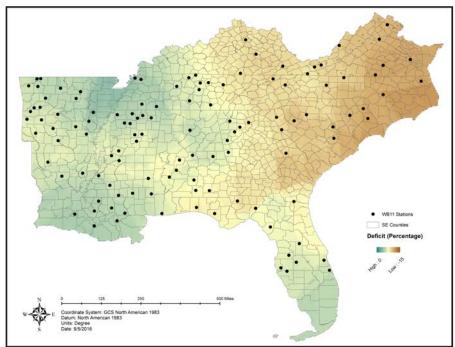


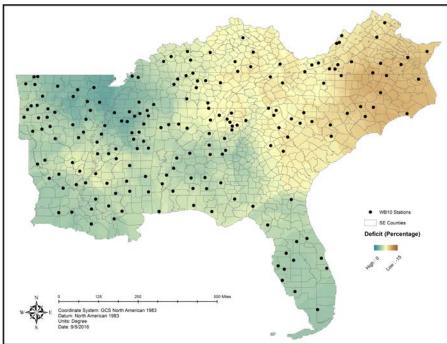


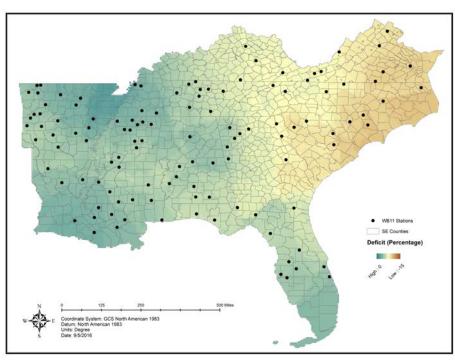












El Calculation

IDENTICAL to AH537

- Intensity (i) is limited to 3 in/hr (raindrop limitation)
- I30 is limited to 2.5 in/hr (ponding in the southeast)

DIFFERENT from AH537

- El is calculated for all storms (no restriction)
- Accumulations are included (separately for comparison)

OPTIONAL ADJUSTMENTS (Not Applied)

- Adjustment factor of 1.04 for I30 values
- Adjust for Missing, Deleted, and Accumulated Data

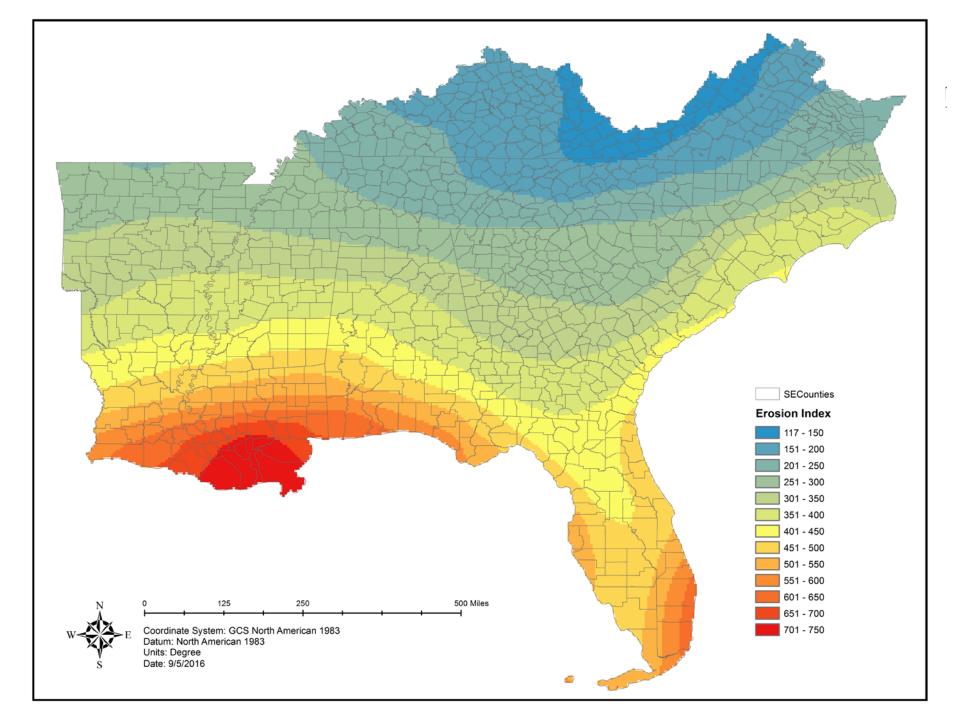
R	RStudio												
File	File Edit Code View Plots Session Build Debug Tools Help												
Ģ.	♀ マ 🔒 🖟 Go to file/function 🖁 マ Addins マ												
•	P Annual El.Rmd × all.data × Water Balance.Rmd × Moving.NORM × ALNORM7100 × State.NORM × ALMETA ×												
\$\psi\$		∀ Filter										Q	
	State.ID [‡]	Station.ID [‡]	Year ‡	Month [‡]	Day [‡]	Time.Begin [‡]	DurationHR. [‡]	DepthIN. [‡]	Original.DepthIN.	Removed.DepthIN.	Kinetic.Energy100.FT.TONS.ACRE.	I30IN.HR. [‡]	EI ‡
1	1	800	1976	9	3	2300	0.50	0.3	0.3	0	2.552127	1.2	3.0625529
2	1	800	1976	9	4	1530	0.50	0.3	0.3	0	2.552127	1.2	3.0625529
3	1	800	1976	9	6	1345	6.25	1.1	1.1	0	9.783896	2.4	23.4813499
		200	1070	^		1000	0.50	^ ^			1.50554	0.0	1 2540540

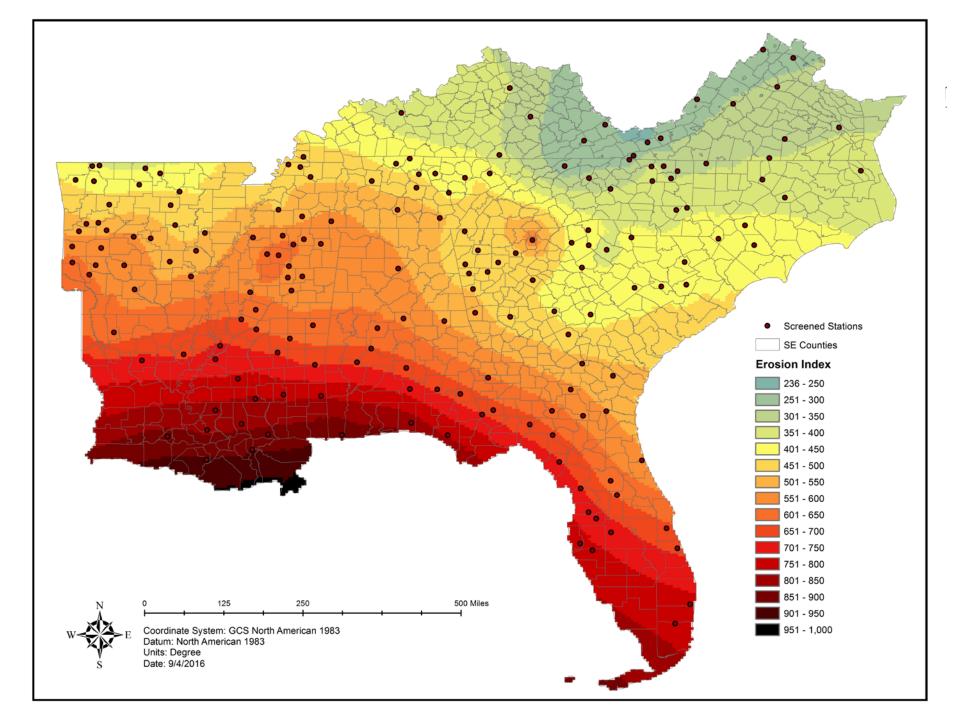
RESULTS

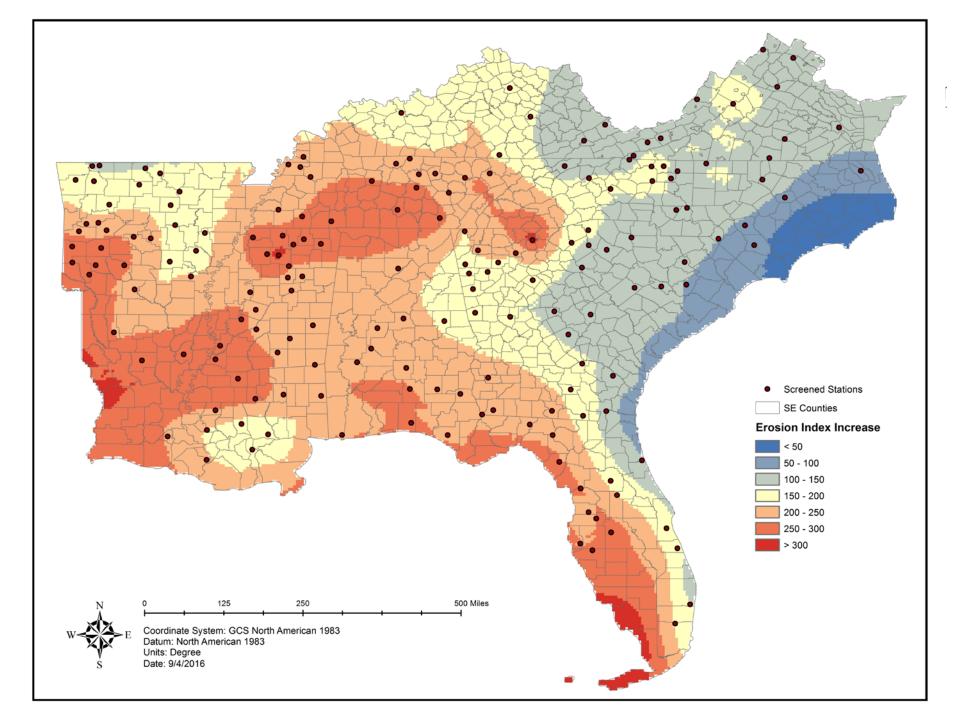
	•					****	2,50		***	· ·	221217220		13111230731
13	1	800	1976	11	27	1400	0.50	0.2	0.2	0	1.568564	8.0	1.2548510
14	1	800	1976	11	27	1445	4.75	3.2	3.2	0	31.796406	2.5	79.4910162
15	1	800	1976	11	28	815	13.25	3.6	3.6	0	30.501465	2.5	76.2536624
16	1	800	1976	12	6	1500	0.50	0.2	0.2	0	1.568564	0.8	1.2548510
17	1	800	1977	1	6	2100	2.00	0.7	0.7	0	5.689255	1.2	6.8271058
18	1	800	1977	1	9	2015	4.00	1.3	1.3	0	11.068009	2.0	22.1360185
19	1	800	1977	1	14	645	3.50	1.2	1.2	0	9.610664	1.2	11.5327970
20	1	800	1977	2	24	30	1.00	1.6	1.6	0	16.221749	2.5	40.5543729
21	1	800	1977	2	27	515	4.50	0.9	0.9	0	8.054946	2.4	19.3318704
22	1	800	1977	3	4	630	2.50	1.3	1.3	0	11.940354	2.5	29.8508860
23	1	800	1977	3	5	415	1.50	0.3	0.3	0	2.352846	0.8	1.8822765

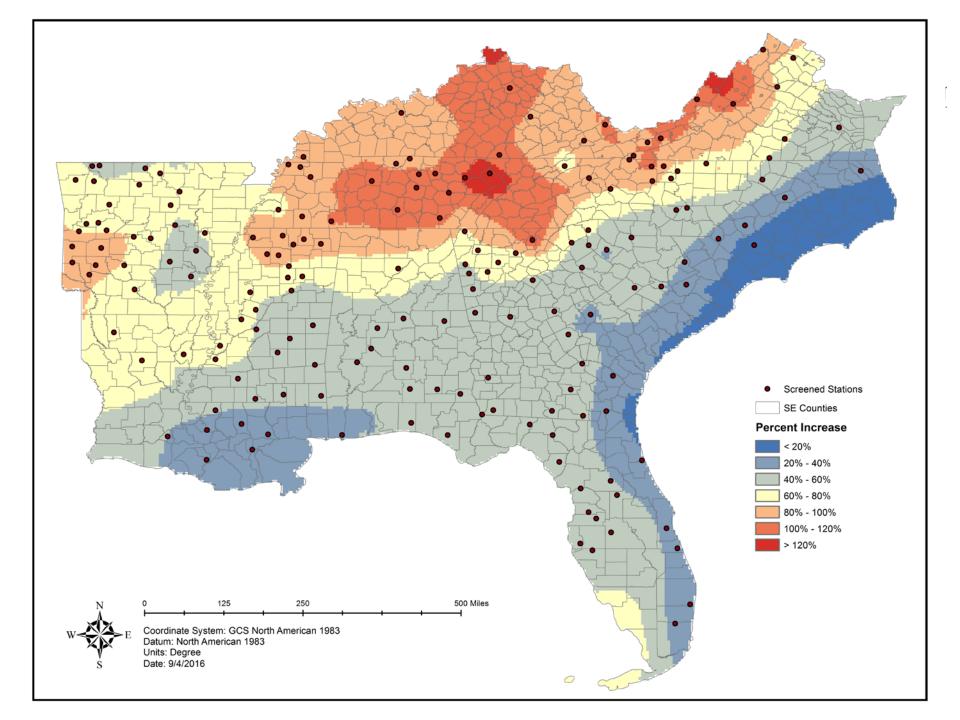
Showing 1 to 23 of 2,505,942 entries

Annual El




Sum of Storm El for Each Year at a Given Location

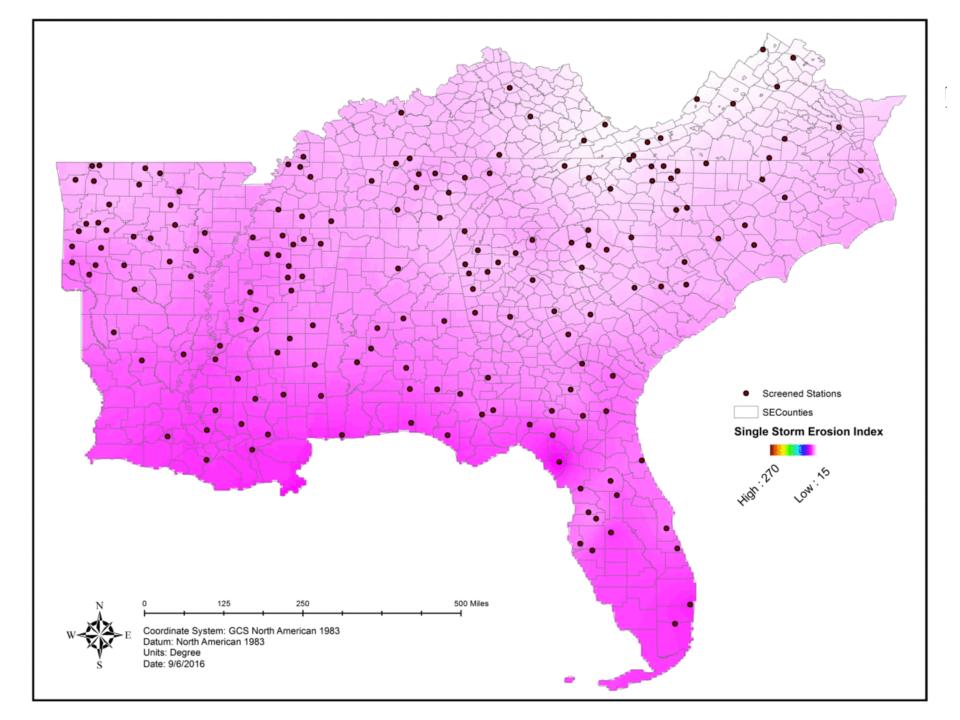

- Usually 30 1000 for Most Years
- Can be as High as 1500 or More
- AH537 Data from 1930's 1950's
- New Data from 1970 2010


Analysis To Date

- 50%, 20%, and 5% Probabilities Analyzed (AH537)
- Mean, SD, Minimum, and Maximum El Values
- Absolute Increase
- Relative Increase

Single Storm El

All Storms at a Location


- Usually Less Than 50 for Most Storms
- Can be as High as 300 or More

Analysis To Date

- Probability of Exceedance
- 1, 2, 5, 10, and 20-year Return Periods (AH537)

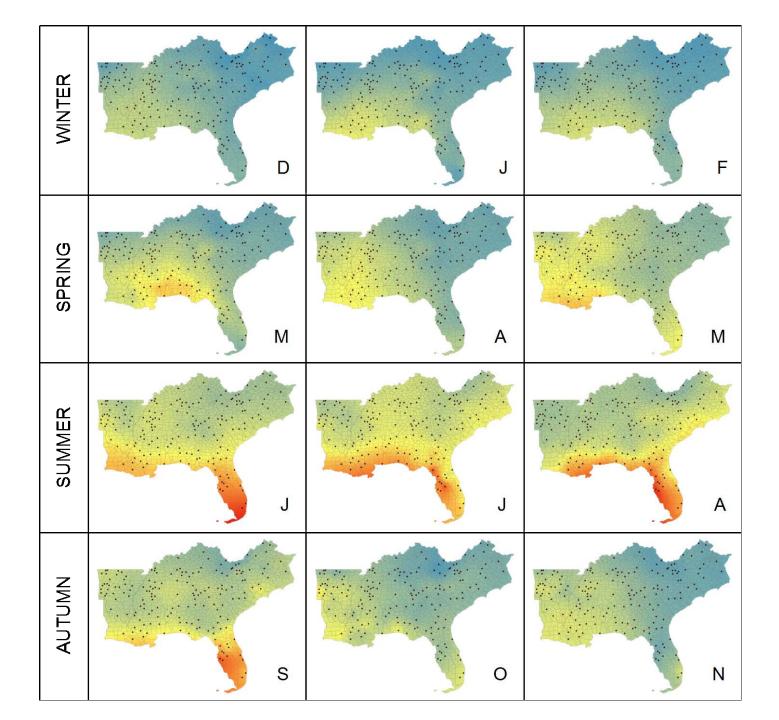
Frequency vs. Severity (In Progress)

- Compare with AH537 Storm Probabilities
- Frequency of Large Storms Expected to Increase
- Severity of Large Storms Expected to Increase

Monthly EI

Sum of Storm El for Each Month at a Given Location

- April October is Higher in the Southeast
- Can be as High as 300 or More


Analysis To Date

- 50%, 20%, and 5% Probabilities Analyzed (AH537)
- Mean, SD, Minimum, and Maximum El Values

Intra-Annual and Inter-Annual Variability

- Precipitation Amounts vs. Energy Density
- ENSO Driven El and Precipitation Patterns

CONCLUSION

Take-Aways

DSI-3260 Data Quality:

- Screening enables the use of about 40%
- Less if years must be consecutive (for trend analysis)

El for the Southeast:

- Annual El (Increased 3%-132%; 62% on Average)
- Storm EI (EI Change Driven by Frequency, Severity, or Both)
- Monthly El Variability Provided at High Resolution

Consistency with Existing Literature:

- Nearing et. al (2004) Predicted 17%-58% Magnitude Changes
- McGregor et. al (1995) Observed 30% Increase in El
- Trenberth et. al (2003) Predicts 7% Intensity Increase K⁻¹

Contact: rpm0010@auburn.edu

Future Work

Observed Change Effect on El

- Trend Analysis of EI (Change vs. Variation & How Much)
- Annual Change, Monthly Change, Duration Change

ENSO Driven El

- Significance of El Nino and La Nina on El
- Trend Analysis of ENSO Effect on EI by Duration
- GAM Analysis

Projected Change Effect on El

- Train Artificial Neural Network (ANN) with New EI
- Run ANN for All NARCCAP Models

ADDITIONAL SLIDES

Workflow

AUBURN
UNIVERSITY

By the Numbers:

11 Tar-Z Files (1 per State)

2 Data Types (QPCP and QGAG)

1,348,610 QPCP Records Extracted

1,348,240 QPCP Records Processed

3,620,570 Continuous Events

148,591 Recorded Months

148,035 Measured Months

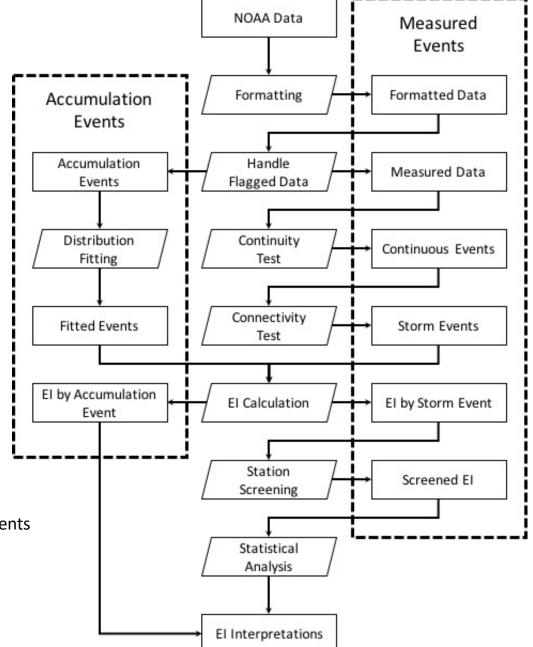
79,470 Accumulation Events

42,911 Deleted Periods

35,016 Missing Periods

123 Unmatched Deleted Periods

77 Unmatched Missing Periods


7 Unmatched Accumulations

3,339,113 Continuous Measured Events

2,507,300 Individual Storm Events

1 Erroneous Station-Month

9 Screening Methods

Chart	readings	For e	ach incre	ment	Ene	rgy
Time	Depth (inch)	Duration (minute)	Amount (inch)	Intensity (in/hr)	Per inch	Total
4:00	0					
:20	0.05	20	0.05	0.15	643	32
:27	.12	7	.07	.60	843	59
:36	.35	9	.23	1.53	977	225
:50	1.05	14	.70	3.00	1074	752
:57	1.20	7	.15	1.29	953	143
5:05	1.25	8	.05	.38	777	39
:15	1.25	20	0	0	0	0
:30	1.30	15	.05	.20	685	34
Tota	ls	90	1.30			1,284
Kinetic	energy of	the storm =	= 1,284(1	$0^{-2}) = 12.8$	34	

The energy per inch of rain in each interval (col. 6) is obtained by entering table 19 with the intensity given in column 5. The incremented energy amounts (col. 7) are products of columns 4 and 6. The total energy for this 90-minute rain is 1,284 foot-tons per acre. This is multiplied by a constant factor of 10⁻² to convert the storm energy to the dimensions in which **El** values are expressed.

The maximum amount of rain falling within 30 consecutive minutes was 1.08 in, from 4:27 to 4:57. I_{30} is twice 1.08, or 2.16 in/h. The storm El value is 12.84(2.16) = 27.7. When the duration of a storm is less than 30 minutes, I_{30} is twice the amount of the rain.

The **EI** for a specified time is the sum of the computed values for all significant rain periods

within that time. The average annual erosion index for a specific locality, as given in figures 1 and 2, is the sum of all the significant storm **El** values over 20 to 25 years, divided by the number of years. For erosion index calculations, 6 h or more with less than 0.5 in of precipitation was defined as a break between storms. Rains of less than 0.5 in, separated from other showers by 6 h or more, were omitted as insignificant unless the maximum 15-min intensity exceeded 0.95 in/h.

Recent studies showed that the median dropsize of rain does not continue to increase for intensities greater than about 2.5 to 3 in/h (7, 15). Therefore, energy per unit of rainfall also does not continue to increase, as was assumed in the derivation of the energy-intensity table published in 1958 (62). The value given in table 19 for rain at 3 in/h (7.6 cm/h in table 20) should be used for all greater intensities. Also, analysis of the limited soil loss data available for occasional storms with 30-min intensities greater than 2.5 in/h showed that placing a limit of 2.5 in (6.35 cm)/h on the I₃₀ component of El improved prediction accuracy for these storms. Both of these limits were applied in the development of figure 1. They slightly lowered previously computed erosion index values in the Southeast, but average-annual El values for the U.S. mainland other than the Southeast were not significantly affected by the limits because they are rarely exceeded.

AH537 Comparison

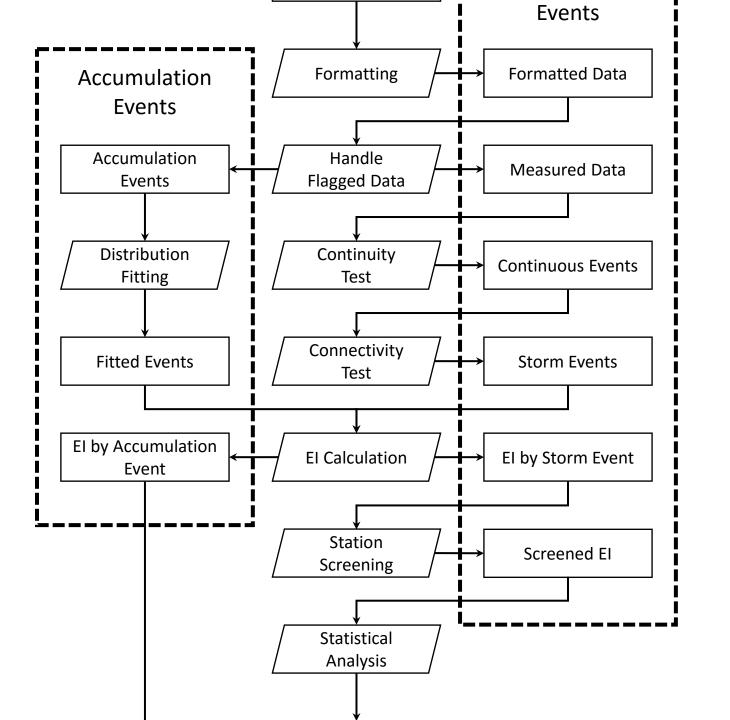

52 UNITED STATES DEPARTMENT OF AGRICULTU

TABLE 18.—Expected magnitudes (

TABLE	17.—Observed	range	and	50-,	20-,	and	5-	perce
							k	ey lo

• *	Values of erosion index (EI)							
Location	Observed 22-year range	50-percent	20-percent probability	5-percent probability				
Alabama:				 				
Birmingham	179-601	354	461	592				
Mobile	279-925	673	799	940				
Montgomery	164-780	3 <i>5</i> 9	482	638				
Arkansas:								
Fort Smith	116-818	254	400	614				
Little Rock	103-625	308	422	569				
Mountain Home	98-441	206	301	432				
Texarkana	137-664	325	445	600				
California:								
Red Bluff	11-240	54	98	1 7 1				
San Luis Obispo	5-147	43	70	113				
Colorado:								
Akron	8-247	72	129	225				
Pueblo	5-291	44	93	189				
Springfield	4-246	79	138	233				
Connecticut:								
Hartford	65-3 <i>5</i> 5	133	188	263				
New Haven	66-373	157	222	310				
District of Columbia	84-334	183	250	336				
Florida:								
Apalachicola	271-944	529	663	820				
Jacksonville	283-900	540	693	875				
Miami	197-1225	529	784	1136				
Georgia:								
Asturan	112 E40	007	277	400				

	Index values normally exceeded once in-								
Location	year 1	years 2	years 5	years 10	years 20				
Alabama:									
Birmingham	54	77	110	140	170				
Mobile	97	122	151	172	194				
Montgomery	62	86	118	145	172				
Arkansas:									
Fort Smith	43	65	101	132	167				
Little Rock	41	69	115	1 <i>5</i> 8	211				
Mountain Home	33	46	68	87	105				
Texarkana	51	73	105	132	163				
California:									
Red Bluff	13	21	36	49	65				
San Luis Obispo	11	15	22	28	34				
Colorado:									
Akron	22	36	63	87	118				
Pueblo	17	31	60	88	127				
Springfield	31	<i>5</i> 1	84	112	152				
Connecticut:									
Hartford	23	33	50	64	79				
New Haven		47	73	96	122				
District of Columbia	39	57	86	108	136				
Florida:									
Apalachicola	87	124	180	224	272				
Jacksonville	92	123	166	201	236				
Miami	93	134	200	253	308				
Georgia:									
Atlanta	49	67	92	112	134				
Augusta		50	74	94	118				
Columbus		81	108	131	152				
Macon		72	99	122	146				
Can	99	120	202	272	2.50				

