

Low Impact Development Or Proper Design

For Better Stormwater Management

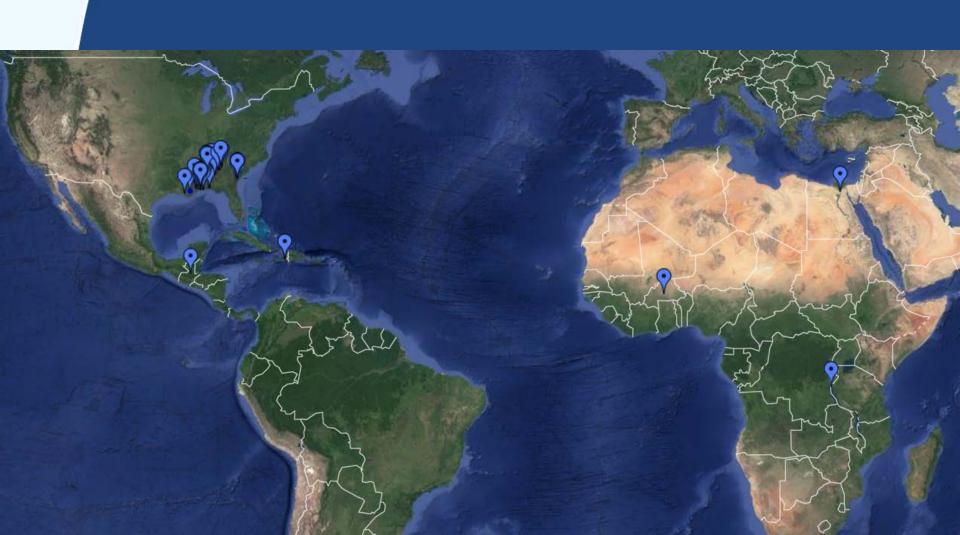
September 8, 2016

30th Annual Alabama Water Resources
Conference and Symposium

Introduction

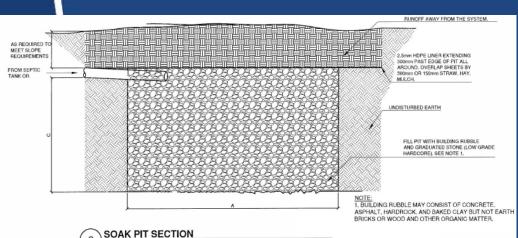
Wade Burcham

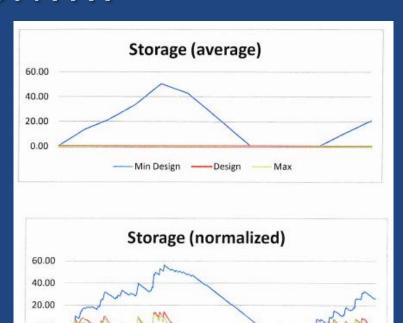
Integrated Science and Engineering (ISE) Engineering Ministries International (eMi)


- Experience as developer, City
 Engineering Consultant,
 Designer, Design Build,
 Litigation Support
- Developing County Experience

DEVELOPING COUNTRY

LID important there, but what about here?





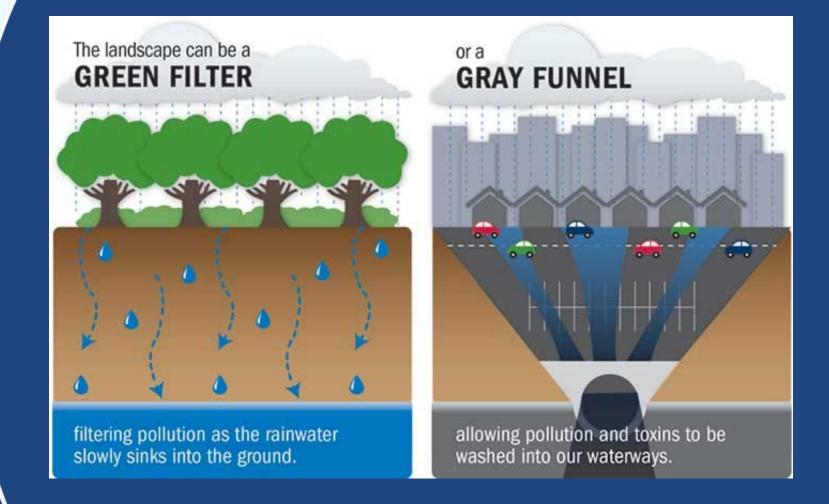
DEVELOPING COUNTRY

LID primarily due to water quality

Design

Max

Min Design



Hinda Gnaunity
Drinking Water from
Bottle
11:12am
5 ml

E. coli (purple)

LID - USA

- Due to:
 - CSO and MS4 Requirements
 - Assest Management
 - Lenexa, Kansas, compared three alternative stormwater management approaches and found that on-site detention with green infrastructure costs about 25 percent less than the old approach of retrofitting and reactive solutions
 - Flood Control
 - Sustainability Goals

	Reduces Stormwater Runoff											Improves Community Livability						
Benefit	Reduces Water Treatment Needs	Improves Water Quality	Reduces Grey Infrastructure Needs	Reduces Flooding	Increases Available Water Supply	Increases Groundwater Recharge	Reduces Salt Use	Reduces Energy Use	Improves Air Quality	Reduces Atmospheric CO ₂	Reduces Urban Heat Island	Improves Aesthetics	Increases Recreational Opportunity	Reduces Noise Pollution	Improves Community Cohesion	Urban Agriculture	Improves Habitat	Cultivates Public Education Opportunities
Practice	CC							#	*	CO ₂			Ž	624	iii	孝		O
Green Roofs					0	0	0						0		<u></u>	—		
Tree Planting					0		0											
Bioretention & Infiltration							0	0							<u> </u>	\bigcirc		
Permeable Pavement					0	<u> </u>		<u> </u>				0	0		0	0	0	
Water Harvesting							0				0	0	0	0	0	0	0	

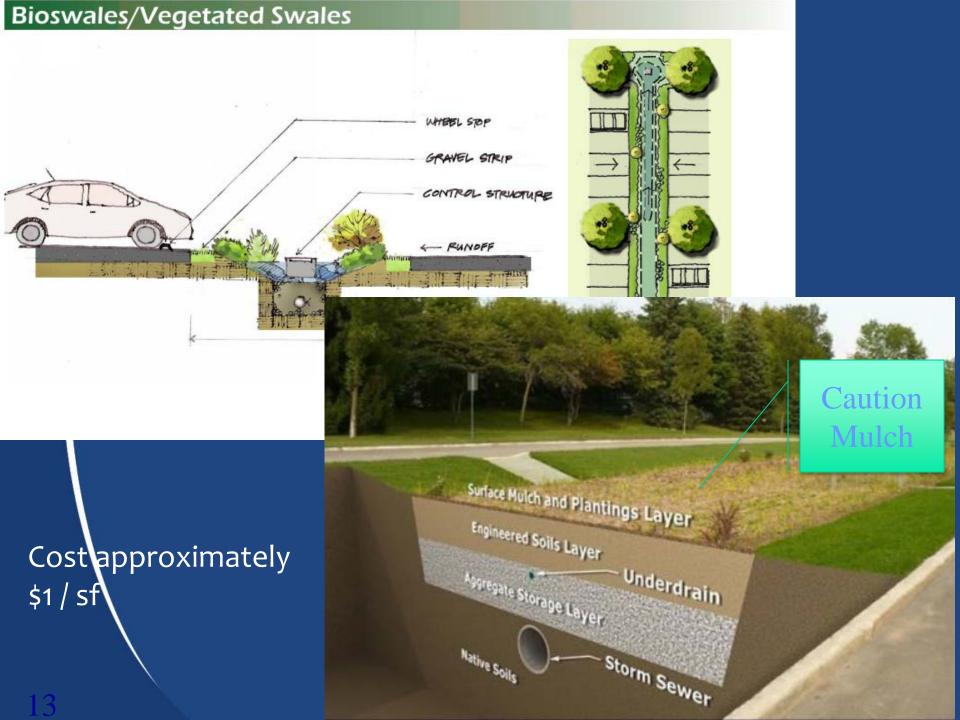
LID - USA

- Maryland in 1980's
 - poor sewage treatment, dirty industrial discharges
 - not on a single cause for the decline but on the accumulation of insults
 - Call for a 40 percent reduction in the flow of the nutrients

Currently 26 States have standards based on retainage of a certain volume of stormwater

LID - Alabama

- National Guard
- City of Fairhope
- City of Tuscaloosa
- City of Hoover
- City of Auburn
- City of Madison
- City of Leeds
- City of Vestavia Hills



LID -

- St. Vincent's One-Nineteen Health and Wellness
 - Lake Purdy Watershed (drinking water source)
 - Bioretention, Grass Filter Strips

Sinclairs Restaurant Renovation

- Lake Martin, AL
- Request of developer
- Slightly less cost than grey infrastructure (1% savings)

Detention Pond Retrofit

Spanish Fort

GA Blue Book

Sizing Criteria		Description			
Water Quality	Runoff Reduction, RR _v (Standard #3)	Retain or reduce the runoff for the first 1.0 inch of rainfall, or to the maximum extent practicable. Since runoff reduction practices eliminate stormwater runoff, and the pollutants associated with it, rather than treating or detaining, they can contribute to other stormwater management standards. If the entire 1.0 inch runoff reduction cannot be achieved, the remaining runoff from the 1.2 inch rainfall must be treated, as described in Standard #4.			
	Treatment, WQ _v (Standard #4)	Retain or treat the runoff from 85% of the storms that occur in an average year. For Georgia, this equates to providing water quality treatment for the runoff resulting from a rainfall depth of 1.2 inches. The water quality treatment goal is to reduce average annual post-development total suspended solids loadings by 80%.			
Channel	Protection	Provide extended detention of the 1-year, 24 hour storm event re- leased over a period of 24 hours to reduce bankfull flows and protect downstream channels from erosive velocities and unstable conditions.			
Overbank Flo	ood Protection	Provide peak discharge control of the 25-year, 24 hour storm event such that the post-development peak rate does not exceed the prede velopment rate to reduce overbank flooding.			
Extreme Flo	od Protection	Evaluate the effects of the 100-year, 24 hour storm on the stormwater management system, adjacent property, and downstream facilities and property. Manage the impacts of the extreme storm event through detention controls and/or floodplain management.			

 + 10% Rule – Aligning hydrographs

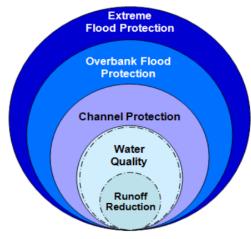


Figure 2.2.3-1 Representation of the Unified Stormwater Sizing Criteria

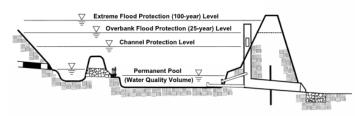
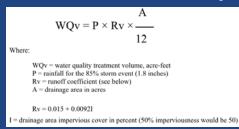


Figure 2.2.3-2 Unified Sizing Criteria Water Surface Elevations in a Stormwater (Wet) Pond

GEORGIA

Chattanooga, TN Rainwater Management Guide


- Pre vs. Post (2 25)
- Stay On Volume 1" (recovery volume in 72 hours) must be accomplished through evapotranspiration, harvesting, reuse, infiltration,
- Whenever the SOV from an applicable project area cannot be managed or achieved onsite, per City requirements, the applicant/owner shall provide appropriate documentation to the City, using approved methodology and in acceptable detail, why the SOV cannot be managed.
- And then Treatment of 1 year 24 hour runoff

Fairhope, AL

Treatment of Water Quality Volume

80% Removal

BMP Removal Efficiency for Total Suspended Solids (TSS)						
Structural Control TSS Removal (%)						
General Application BMPs						
Wet Pond	80					
Storm water Wetland	80					
Bioretention Area	80					
Sand Filter	80					
Enhanced Swale	80					
Limited Application BMPs						
Filter strip	50					
Grass Channel	50					
Organic Filter	80					
Underground Sand Filter	80					
Submerged Gravel Wetland	80					
Infiltration Trench	80					
Gravity (Oil/Grit Separator)	40					
Proprietary Structural Control	Varies					
Dry Detention Basin	60					

• Stream Velocity (pre vs post) or provide 24 hours of extended detention on-site, for post-developed storm water runoff generated by the 1-year, 24-hour storm

Fairhope, AL

• Use a minimum of 10 LID Techniques or prove cannot be successfully implemented.

Wet Basins

Rain Gardens

Permeable Pavement

Sand Filter

Grass Swales

Constructed wetlands

Step Pools

In-line Stormwater Storage

Restoration of Habitat

Greenways

Stream Restoration

Bio Retention

Level Spreader

Innovative Measures

Fairhope, AL

- Jonathan Smith (Historic Preservation Meeting)
- First systems have just been through three year maintenance inspection.
- Most measures are less than two years old.
- Regulations have been successful (contributed to a recent America in Bloom Award)
- Regulation development really considered public input
- Need tweeking (many only can provide 4 measures)
- Few Conflicts
- Thinks "It's a great idea"
- Not a silver bullet
- Several subdivisions completed
- Maintenance has not been an issue

Alabama LID Handbook

Low Impact Development Handbook for the State of Alabama

Alabama Department of Environmental Management Alabama Cooperative Extension System Auburn University

South East City A

- Population: 65,000
- Has a stormwater utility
- Allowed / required LID for several years
- Several City Owned LID projects
- Maintenance has not been an issue
- "We don't do anything different for our LID measures"
- Mulch replaced with other landscaped features
- Weeding done with other landscaped features
- Biggest issue was training for recreation department staff

South East City B

- Population: 80,000
- Has a stormwater utility
- Allowed / required LID for several years
- Several City Owned LID projects
- Mulch is replaced often
- Seeing water quality benefits (one stream currently being removed from impaired waters list)
- Maintenance is not a big issue
- Annual stormwater improvement budget about \$1 million a year. None of that budget anticipated for LID repair or maintenance.
- Notices individual home owners embracing small parcel
 size LID measures
- Loves tree planters

South East City C

- Population: 25,000
- Allowed / required LID for several years
- Dedicated Stormwater Manager with maintenance staff
- Algea blooms being noticed it wet ponds (education campaign being done)
- No known maintenance to LID measures
- LID measures required by ordinance but staff would prefer they were not required

Is it LID or Good Design?

Design of Urban Stormwater Controls

Water Environment Federation* (WEF*)

American Society of Civil Engineers/ Environmental & Water Resources Institute

WEF MANUAL OF PRACTICE No. 23
ASCE MANUALS AND REPORTS ON ENGINEERING PRACTICE No. 87

American Society of Landscape Architects Stormwater Case Studies

- 479 case studies from 43 states
- Increased cost in 25% of cases
- No influence in cost in 31% of cases
- Cost reduction in 44% of cases

Cost

Table 1. Summary of Cost Comparisons Between Conventional and LID Approaches

from EPA's Reducing Stormwater Costs Through Low Impact Development (LID) Strategies and Practices 2007,

Project _a	Conventional	LID Cost	Cost	Percent	
	Development		Difference _b	Difference _b	
	Cost				
2 nd Avenue SEA Street	\$868,803	\$651,548	\$217,255	25%	
Auburn Hills	\$2,360,385	\$1,598,989	\$761,396	32%	
Bellingham City Hall	\$27,600	\$5,600	\$22,000	80%	
Bellingham Bloedel	\$52,800	\$12,800	\$40,000	76%	
Donovan Park					
Gap Creek	\$4,620,600	\$3,942,100	\$678,500	15%	
Garden Valley	\$324,400	\$260,700	\$63,700	20%	
Kensington Park	\$765,700	\$1,502,900	-\$737,200	-96%	
Laurel Springs	\$1,654,021	\$1,149,552	\$504,469	30%	
Mill Creek _c	\$12,510	\$9,099	\$3,411	27%	
Prairie Glen	\$1,004,848	\$599,536	\$405,312	40%	
Somerset	\$2,456843	\$1,671,461	\$785,382	32%	
Tellabs Corporate Campus	\$3,162,162	\$2,700,650	\$461,510	15%	

^a Some of the case study results do not lend themselves to display in the format of this table (Central Park Commercial Redesigns, Crown Street, Poplar Street Apartments, Prairie Crossing, Portland Downspout Disconnection, and Toronto Green Roofs).

b Negative values denote increased cost for the LID design over conventional development costs.

^c Mill Creek costs are reported on a per-lot basis.

Cost

Table 1: Cost savings from installing LID stormwater controls in residential developments.

Location	Description	LID Cost Savings ^a
Meadow on the Hylebos Residential Subdivision Pierce County, WA	9-acre development reduced street width, added swale drainage system, rain gardens, and a sloped bio-terrace to slowly release stormwater to a creek. Stormwater pond reduced by 2/3, compared to conventional plan. (Zickler 2004)	LID cost 9% less than conventional
Somerset Community Residential Subdivision Prince George's Co., MD	80-acre development included rain gardens on each lot and a swale drainage system. Eliminated a stormwater pond and gained six extra lots. (NAHB Research Center Inc. 2003)	\$916,382 \$4,604 per lot
Pembroke Woods Residential Subdivision Frederick County, MD	43-acre, 70-lot development reduced street width, eliminated sidewalks, curb and gutter, and 2 stormwater ponds, and added swale drainage system, natural buffers, and filter strips. (Clar 2004; Lehner et al. 2001)	\$420,000 \$6,000 per lot ^b
Madera Community Residential Subdivision Gainesville, FL	44-acre, 80-lot development used natural drainage depressions in forested areas for infiltration instead of new stormwater ponds. (PATH 2005)	\$40,000 \$500 per lot ^b
Prairie Crossing Residential Subdivision Grayslake, IL	667-acre, 362-lot development clustered houses reducing infrastructure needs, and eliminated the need for a conventional stormwater system by building a natural drainage system using swales, constructed wetlands, and a central lake. (Lehner et al. 2001; Conservation Research Institute 2005)	\$1,375,000- \$2,700,000 \$3,798-\$7,458 per lot ^b
SEA Street Retrofit Residential street retrofit Seattle, WA	1-block retrofit narrowed street width, installed swales and rain gardens. (Tilley 2003)	\$40,000
Gap Creek Residential Subdivision Sherwood, AK	130-acre, 72-lot development reduced street width, and preserved natural topography and drainage networks. (U.S. EPA 2005; Lehner et al. 2001; NAHB Research Center Inc. 2003)	\$200,021 \$4,819 per lot
Poplar Street Apartments Residential complex Aberdeen, NC	270-unit apartment complex eliminated curb and gutter stormwater system, replacing it with bioretention areas and swales. (U.S. EPA 2005)	\$175,000
Kensington Estates* Residential Subdivision Pierce County, WA	24-acre, 103-lot hypothetical development reduced street width, used porous pavement, vegetated depressions on each lot, and reduced stormwater pond size. (CH2MHill 2001; U.S. EPA 2005)	\$86,800 \$843 per lot ^b
Garden Valley* Residential Subdivision Pierce County, WA	10-acre, 34-lot hypothetical development reduced street width, used porous paving techniques, added swales between lots, and a central infiltration depression. (CH2MHill 2001)	\$60,000 \$1,765 per lot ^b
Circle C Ranch Residential Subdivision Austin, TX	Development employed filter strips and bioretention strips to slow and filter runoff before it reached a natural stream. (EPA 2005)	\$185,000 \$1,250 per lot

Cost

Table 2: Cost savings from installing LID stormwater controls in commercial developments.

developments.	developments.							
Location	Description	LID Cost Savings ^a						
Parking Lot Retrofit Largo, MD	One-half acre of impervious surface. Stormwater directed to central bioretention island. (U.S. EPA 2005)	\$10,500-\$15,000						
Old Farm Shopping Center* Frederick, MD	 3-acre site redesigned to reduce impervious surfaces, added bioretention islands, filter strips, and infiltration trenches. (Zielinski 2000) 	\$36,230 \$3,986 per acre ^b						
270 Corporate Office Park* Germantown, MD	12.8-acre site redesigned to eliminate pipe and pond stormwater system, reduce impervious surface, added bioretention islands, swales, and grid pavers. (Zielinski 2000)	\$27,900 \$2,180 per acre ^b						
OMSI Parking Lot Portland, OR	6-acre parking lot incorporated bioswales into the design, and reduced piping and catch basin infrastructure. (Liptan and Brown 1996)	\$78,000 \$13,000 per acre ^b						
Light Industrial Parking Lot* Portland, OR	2-acre site incorporated bioswales into the design, and reduced piping and catch basin infrastructure. (Liptan and Brown 1996)	\$11,247 \$5,623 per acre ^b						
Point West Shopping Center* Lexana, KS	Reduced curb and gutter, reduced storm sewer and inlets, reduced grading, and reduced land cost, used porous pavers, added bioretention cells and native plantings. (Beezhold 2006)	\$168,898						
Office Warehouse* Lexana, KS	Reduced impervious surfaces, reduced storm sewer and catch basins, reduced land cost, added bioswales and native plantings. (Beezhold 2006)	\$317,483						
Retail Shopping Center*	9-acre shopping development reduced parking lot area, added porous pavers, clustered retail spaces, added infiltration trench, bioretention and a sand filter, reduced curb and gutter and stormwater system, and eliminated infiltration basin. (Center for Watershed Protection 1998b)	\$36,182 \$4,020 per acre ^b						
Commercial Office Park*	13-acre development reduced impervious surfaces, reduced stormwater ponds and added bioretention and swales. (Center for Watershed Protection 1998b)	\$160,468 \$12,344 per acre ^b						
Tellabs Corporate Campus Naperville, IL	55-acre site developed into office space minimized site grading and preserved natural topography, eliminated storm sewer pipe and added bioswales. (Conservation Research Institute 2005)	\$564,473 \$10,263 per acre ^b						
Vancouver Island Technology Park Redevelopment Saanich, British Columbia	Constructed wetlands, grassy swales and open channels, rather than piping to control stormwater. Also used amended soils, native plantings, shallow stormwater ponds within forested areas, and permeable surfaces on parking lots. (Tilley 2003)	\$530,000						
	orthwest, with data from listed sources. stes hypothetical or modeled project, not actually constructed.							

* indicates hypothetical or modeled project, not actually constructed.
* Dollar amounts as reported at the time of study.

^b Per-acre cost savings calculated by ECONorthwest.

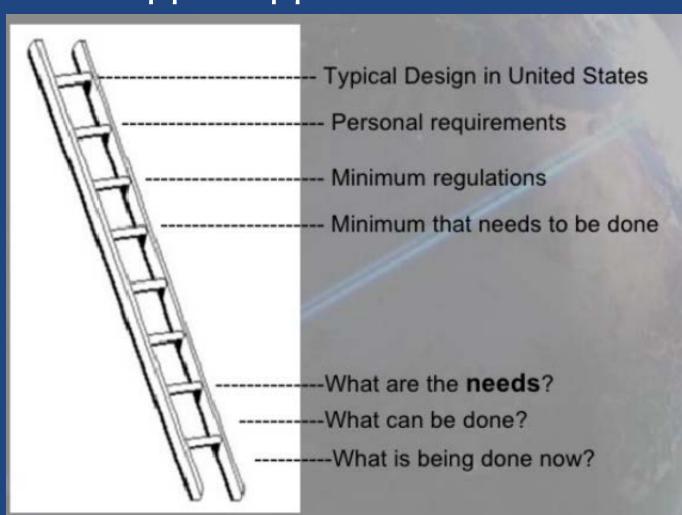
Developer's perspective

- Initial concern is cost
- Now most heard complaint is code compliance
 - Codes written prior to advent of LID

Ordinance Changes

- Sometimes difficult
- Consider watershed level ordinances

Ordinance Changes


- Sometimes difficult
- Consider watershed level ordinances

Ordinance Changes

Consider stepped approach

Thanks!

Wade Burcham
wburcham@intse.com
(912) 656-8150
1290 Main Street, Suite C
Daphne, AL 36526

