Small *n* and collinear predictors: assessment of alternative regression methods for LULC studies

Brad Schneid
Christopher Anderson
Jack Feminella

Auburn University

Background

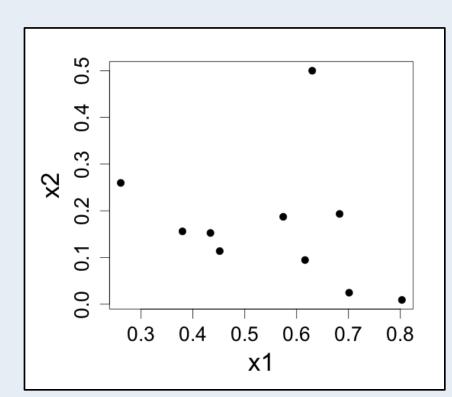
Agricultural & urban land-use/cover (**LULC**) can influence:

- stream hydrology
- nutrient & sediment concentrations
- aquatic habitat quantity/quality
- thermal regime
- aquatic biota

Background

LULC impact studies frequently have:

- Low replication (small n)
- Collinear predictors
- Outliers/non-ideal data



Background & Goals

 Ordinary least-squares (OLS) performs poorly with collinearity and/or small n

$$\widehat{var}\left(\widehat{\beta}_{j}\right) = \frac{s^{2}}{(n-1)var(X_{j})} \cdot \frac{1}{1-R_{j}^{2}}$$

- Compare OLS-related selection methods & alternatives in terms of:
 - Identification of "important" predictors
 - Coefficient estimation and prediction

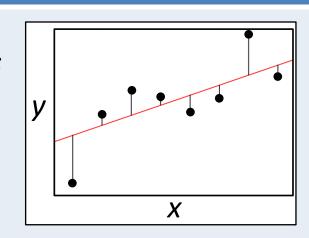
OLS selection methods

Many OLS-related selection methods/criteria exist

- Automated stepwise methods (forward, backward)
 - □ Criteria: adjusted R², Mallow's Cp, AIC, etc...
 - AIC (Akaike information criterion)
 - model fit (SS_{res}) + penalty for model size
 - allows for model ranking/weighting
 - **AICc** = small sample size corrected AIC
- Multi-model averaging (MMA)
 - 'natural' (MMA.n) and 'zero' (MMA.z) methods

OLS and coefficient 'shrinkage'

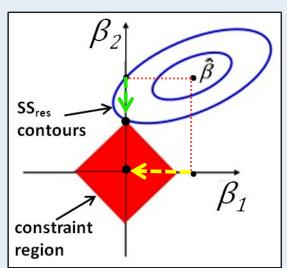
OLS seeks $\hat{\beta}$ that minimizes the sum of squared residuals $(SS_{res}) = \Sigma(y - X\beta)^2$



LASSO (least absolute shrinkage & selection operator)

modifies OLS solution to constrain the absolute magnitude of reg. coefficients:

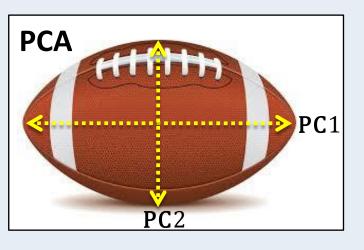
LASSO seeks $\hat{\beta}$ to min. SS_{res} , s.t. $\Sigma |\beta| \leq t$

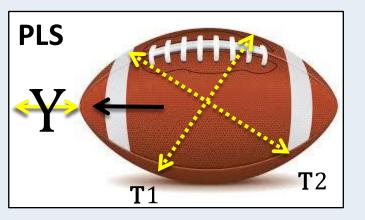


 $oldsymbol{^*}t$ is a tuning parameter, chosen by C.V.

Latent variables: PLS vs. PCA

Football = centered X cloud





PCA:

Find PCs = XW such that:

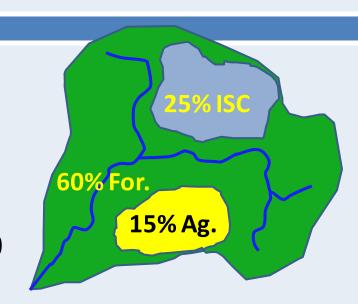
- \square var(PC1) > var(PC2) > ... > var(PCp)
- PCi _ PCj for all i,j pairs

PLS:

- 1) Find Ts = XW such that:
 - \square cov(Y, T1) > cov(Y, T2) > ... > cov(Y, Tp)
 - □ Ti Tj for all i,j pairs
- 2) Regress Y on T, get coefficients (Q)
- 3) Calculate **X** coefficients: $\beta = WQ'$

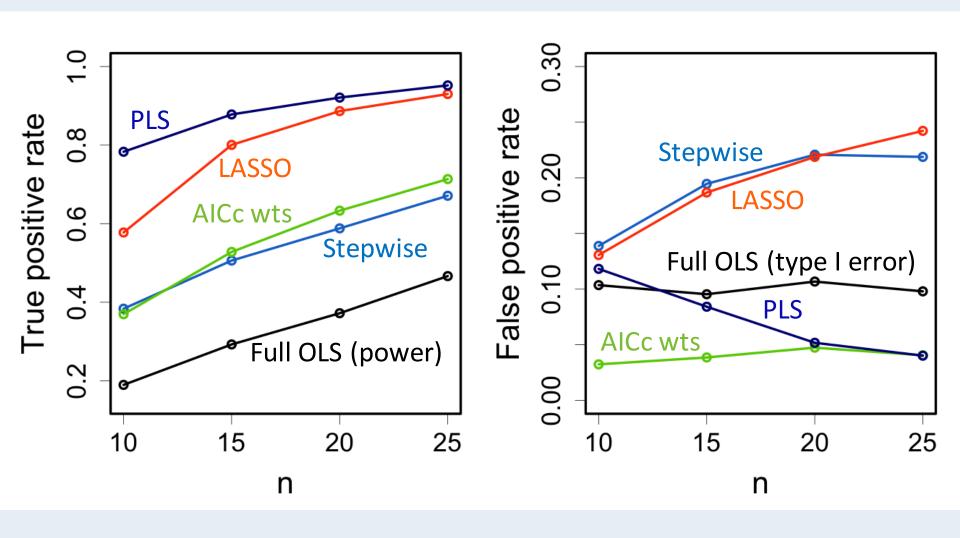
Methods: data creation

- Simulated X to mimic % LULC
 - 6 highly correlated X variables
 - average simulation correlation ≈ 0.70

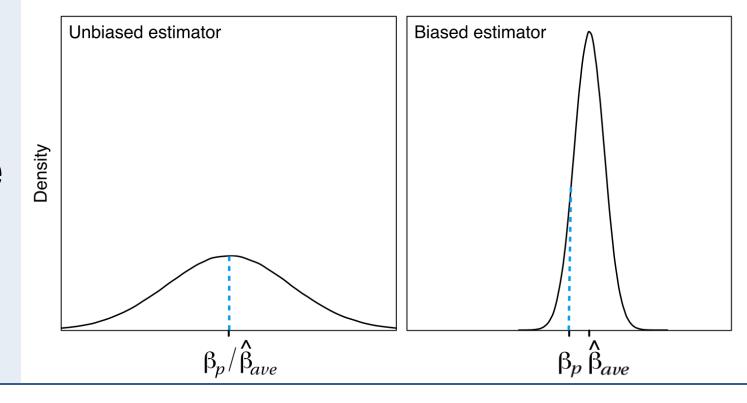


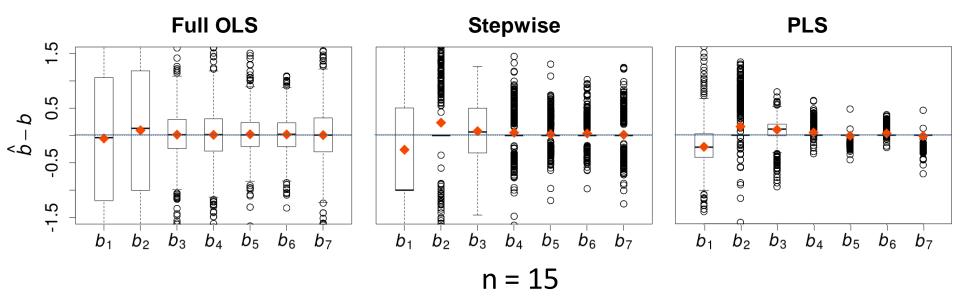
- Created 1 additional "forest" variable (7 total)
 - $X_3 = 1 (X_1 + X_2 + noise)$
- \square Remaining Xs named X_4 to X_7
- □ Let $y = X_1\beta_1 + X_3\beta_3 + N(0, 0.1)$; $\beta_1 = 1.0$, $\beta_3 = -0.5$

Results: classification of 'important' predictors

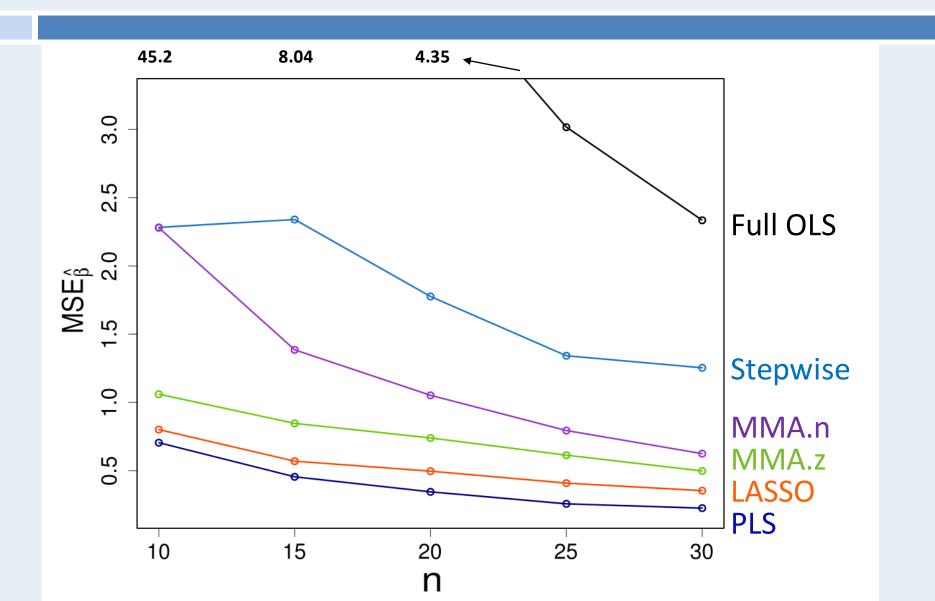


Biasvariance tradeoff

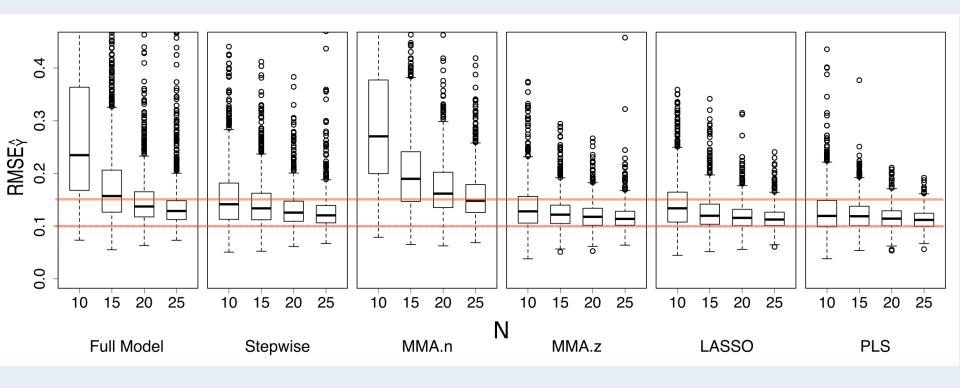




Results: $MSE_{\hat{\beta}} = variance + bias^2$



Results: prediction of test data



Conclusions & remarks

- PLS performed well with small n and highly collinear X
 with all 3 criteria
 - Identification of 'important' Xs
 - β estimation
 - Prediction
- PLS assumes that y is a function of underlying and unmeasured latent variables
- PLS also used for multiple Y regression/ordination

A simple modification for robust PLS

Brad Schneid and Ash Abebe

Background:

- □ PLS is sensitive to outliers, which are difficult to detect in multivariate data
- Outliers can be present as:
 - entire incorrect observations (rows)
 - recording/copying mistakes (random point values)
 - 3) correct, valid data

Background: PLS algorithms

- Available outlier-resistant PLS algorithms are overly complicated and tailored for entire outlying rows
- PLS algorithm begins by calculating covariance between X and y as initial weights

Goal: Determine if replacement of covariance with rank-based alternative results in outlier-resistant PLS

Methods: PLS modification

Pearson's r = covariance(x,y) / sd(x)sd(y)

Robust covariance based on rank correlation:

- Spearman's rho
- Kendall's tau

Angular transformation: $2\sin([\pi(rho)]/6)$ & $\sin([\pi(tau)]/2)$

Alt. covariance = transformed rank $cor(y, x) \cdot sd(x)sd(y)$

Results: Prediction RMSE

Simulation Mean RMSE 2.0 2.5 3.0 Substituting the state of the sta

20

% Outliers

30

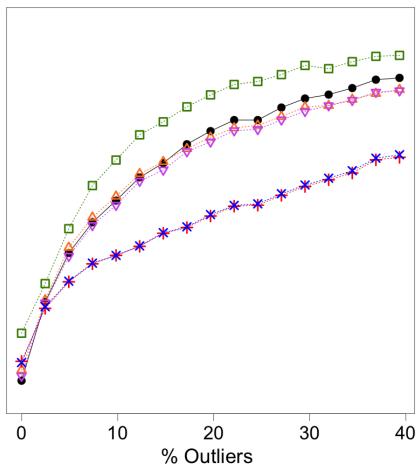
40

10

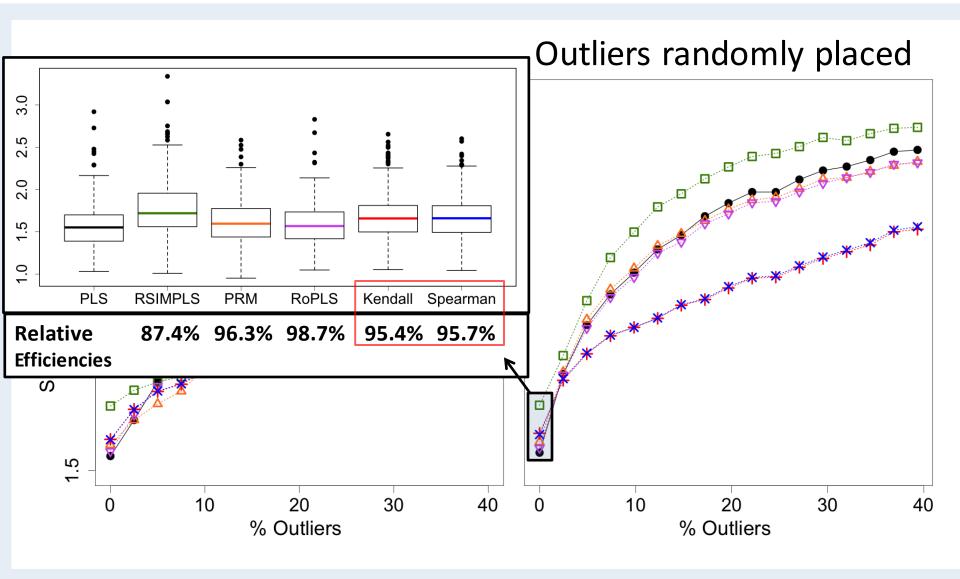
1.5

0

Outliers randomly placed



Results: Prediction RMSE



Summary

Rank-based PLS:

- demonstrated outlier resistance in terms of β-est. and prediction in both outlier cases (rows & random)
- only methods resistant to randomly placed outliers
- had high relative efficiency

Questions?