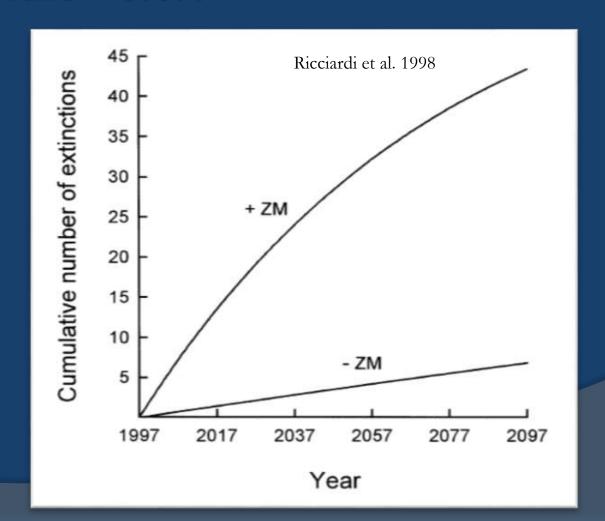

Microhabitat Preferences of Federally Threatened Freshwater Mussel Species in Coastal Plain Streams

Jonathan M. Miller¹, Bijay B. Niraula¹, J. Murray Hyde^{1,2}, Paul D. Johnson³, and Paul M. Stewart¹

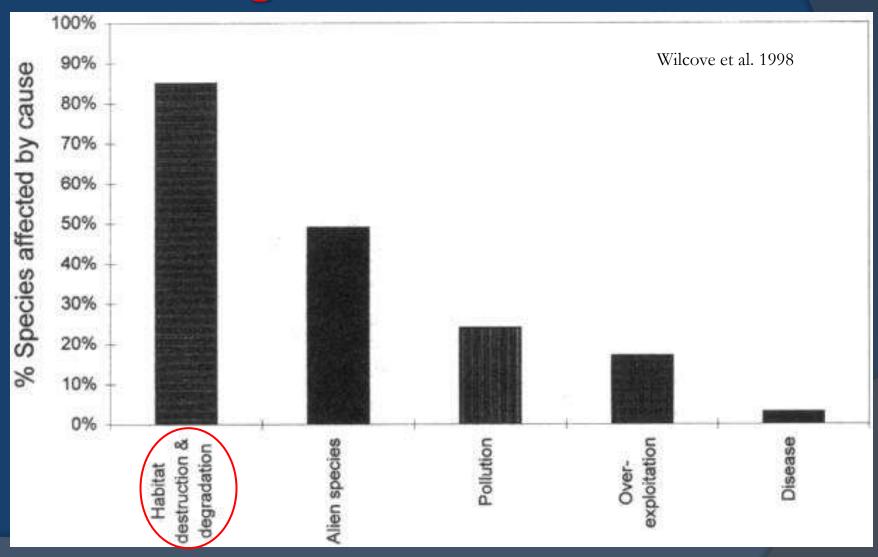
¹Department of Biological & Environmental Sciences, Troy University, Troy, AL ²Current: Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA

³Alabama Department of Conservation and Natural Resources, Alabama Aquatic Biodiversity

Center, Marion, AL


Background

- North America ~50 genera and 300 species
- More than 2/3 species vulnerable to extinction
- Alabama 60% U.S. species
- About 68% AL species imperiled or extinct



Extinction rate per decade

- Current − 1.2%
- Future 6.4%

Major threat to most faunal groups -Habitat degradation and loss

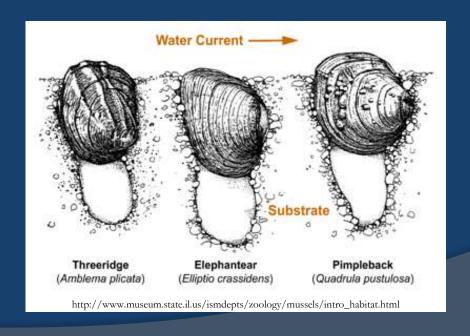
Federal Register Volume 77, Number 196 (November 2012)

Endangered	Threatened	
Margaritifera marrianae	Fusconaia burkei	
Fusconaia rotulata	Fusconaia escambia	
Obovaria choctawensis	Pleurobema strodeanum	
Ptychobranchus jonesi	Hamiota australis	

Pleurobema strodeanum

Fusconaia burkei

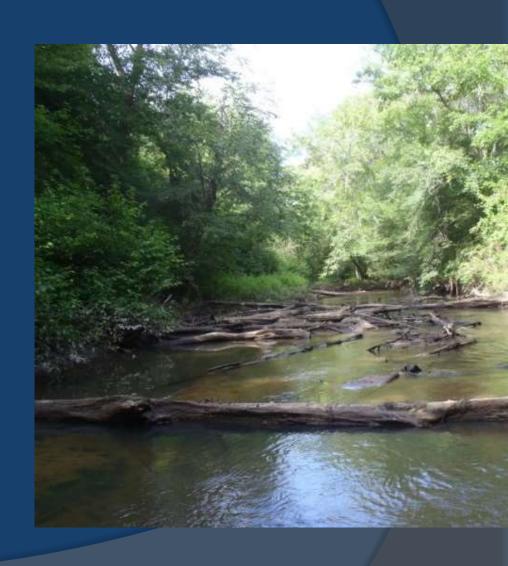
Hamiota australis


What we studied

- Microhabitat focus
- Instream habitat brief summary
- Shear stress brief summary

Note:

- This is the first study where each mussel was sampled and variables measured on an individual mussel basis (n = 499)
- Also, the first study where habitat variables were measured for federally threatened species


- Why is Microhabitat important?
 - Limited mobility
 - Inability to actively select habitats

Microhabitat for mussels

Hydrologic

- Water depth
 - distribution
- Current velocity
 - O₂ supply
 - waste transport
 - substrate stability
 - excess siltation

Microhabitat for mussels

Substrate

- Sediment
 - basic physical medium to live
 - avoid unfavorable conditions
- Compaction
 - how firm mussels held

- Instream habitat
 - sediment stability
 - leaf pack, root mat, root wad, woody debris, and log

Objectives

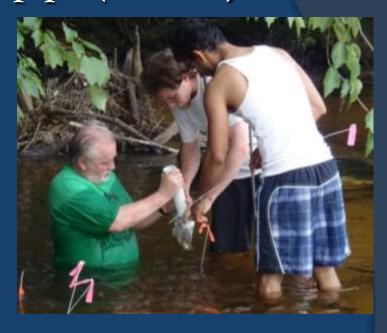
- Determine microhabitat variables at locations where individuals of 3 threatened and a common mussel species were found; and if differences existed among preferences
 - depth
 - current velocity
 - substrate compaction level
 - sediment particle size

Methods

- Sites
 - Blue Springs State Park (BS) W Fork Choctawhatchee River, Barbour County, AL
 - Eightmile Creek, Walton County, FL
 - Eightmile Creek Site 1 (8M1)
 - Eightmile Creek Site 2 (8M2) 150 m upstream
- Sampling
 - 5 person hours
 - Wadeable sites

- A species specific color coded flag
 (w/ unique #) was inserted in the sediment
- Individuals of mussel species were removed, tagged, measured, and returned

Depth and current velocity -Pygmy Current Meter


Compaction -Rod (1.41 cm)

Sediment collection - PVC pipe (5.08 cm)

Oven dried at 105 °C for 24 hours

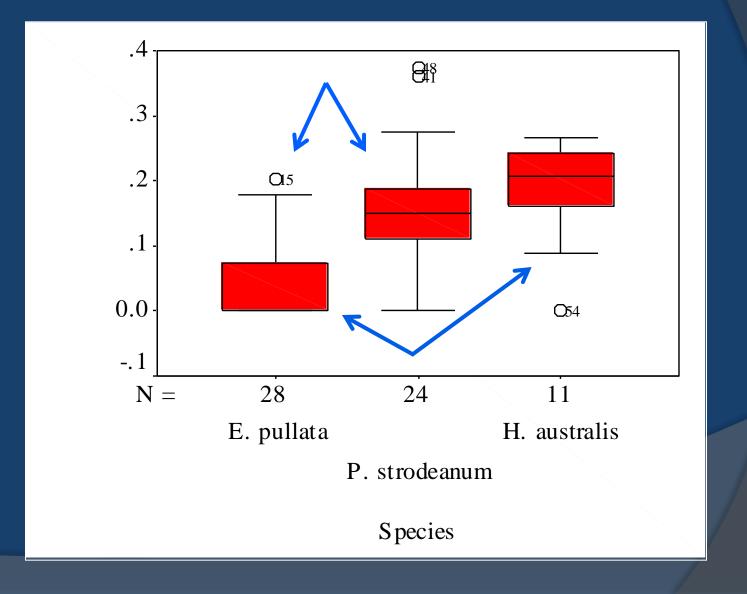
Grain size determination (sieved):

- 2 mm (no. 10) - 0.250 mm (no. 60)

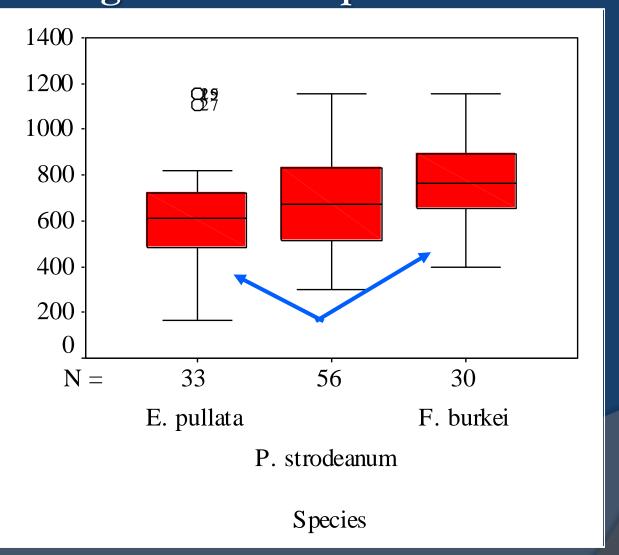
- 1 mm (no. 18) - 0.125 mm (no. 120)

- 0.5 mm (no. 35) - 0.063 mm (no. 230)

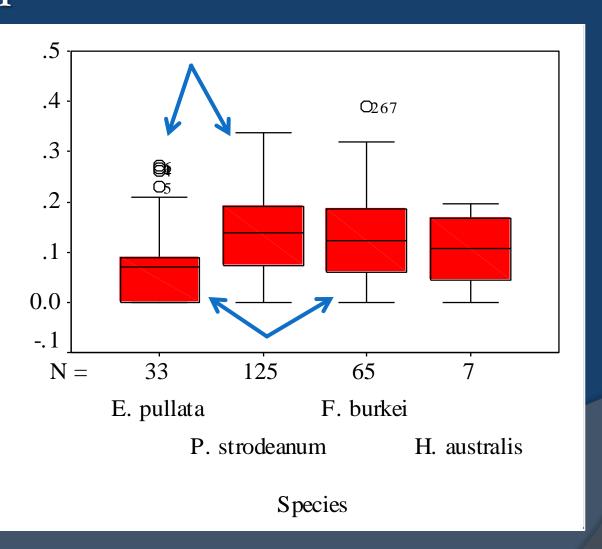
Data Analysis

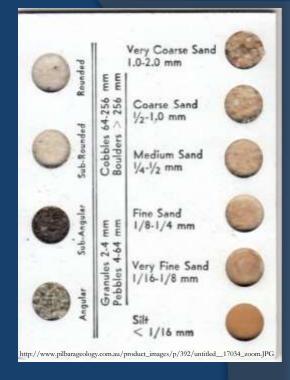

- Kruskal-Wallis H-test
 - differences in microhabitat variables among species
- \odot If sig. diff., Bonferroni's correction applied to α
 - then Mann-Whitney U-tests
- Compaction (Pressure) = Force/Area (N/m²)
 - expressed as kPa

Results


	Common species	Threatened species		
Sites	Elliptio pullata	Pleurobema strodeanum		Hamiota australis
BS	28	24	2	11
8M1	33	56	30	3
8M2	33	183	85	11
Total	94	263	117	25

Total individuals (individual habitat data points) - 499


BS – current velocity (p < 0.001) was significantly different among the mussel species


 8M1 – depth (p < 0.001), current velocity (p < 0.001), and compaction (p = 0.023) were significantly different among the mussel species

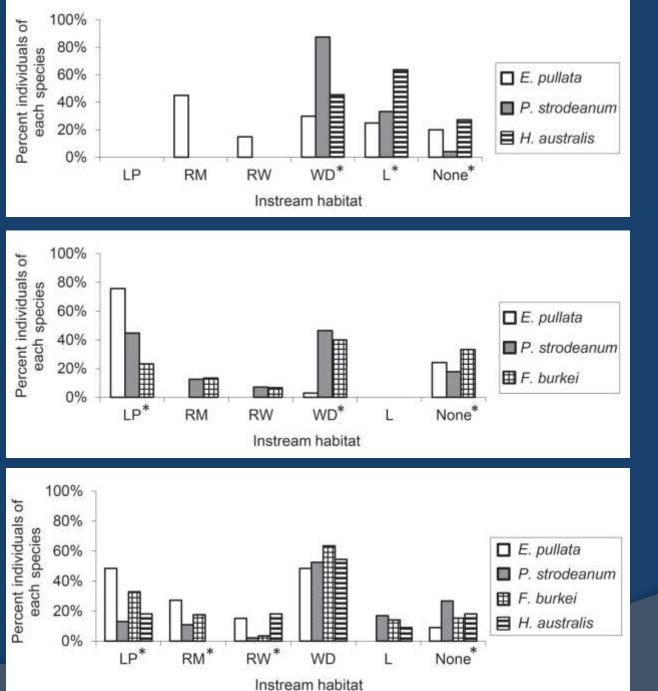
8M2 – depth (p = 0.001) and current velocity (p = 0.004) were significantly different among the mussel species

- Sediment size classes
 - BS Gravel, coarse sand, and medium sand were significantly different between *P. strodeanum* and *H. australis*, and gravel and medium sand between *E. pullata* and *H. australis* (p < 0.05)

- 8M1 Gravel and very coarse sand were significantly different between E. pullata and F. burkei (p < 0.05)
- 8M2 Very fine sand was significantly different between *F. burkei* and *E. pullata* and *F. burkei* and *P. strodeanum* (p < 0.05)

Discussion

- Elliptio pullata tended to be present at lower depth, current velocity, and compaction
- More sensitive threatened species were limited to higher microhabitat variable values
- Greater depth reduced effects of water level fluctuation and drought



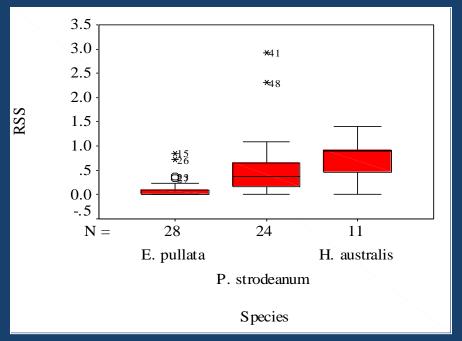
- Continuously flowing water has been linked to lower unionid mortality compared to no measureable current velocity
- More compact sediment is related to reduced sediment entrainment and higher stability

The threatened status of these species is likely due to habitat related stress

Instream habitat

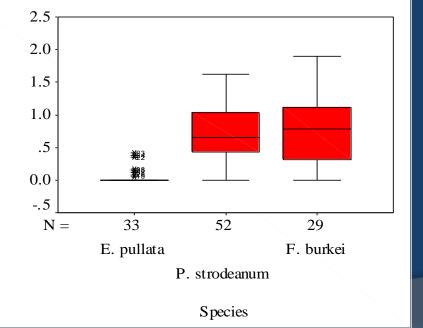
- Threatened species almost exclusively associated with woody debris or logs at all sites
- Common species (*E. pullata*) often exclusively with leaf pack or equally with leaf pack and woody debris (except BS)
- 67-96% had at least one instream habitat structure nearby

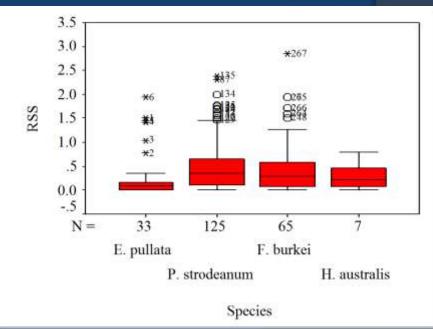
BS – no leaf pack


8M1 - no logs

8M2

Shear stress


- RSS < 1 no substrate movement</p>
- RSS > 1 water entrained the substrate
 - possibly unstable mussel microhabitats
- Except for *H. australis* at 8M2, threatened species always had significantly higher RSS than *E. pullata*
- Threatened species 15% at BS and 8M2, and 31% at 8M1 had RSS > 1
- Only 15% of *E. pullata* at 8M2 had RSS > 1



8M1

8M2

Summary and Conclusions

- Elliptio pullata preferred shallow and slow flowing water and loose sediment (usually streambanks)
- Threatened species preferred habitats with greater depth, current velocity, and compaction, with woody debris or logs for instream habitat, and with a higher RSS

Likely the major cause for declines – excess sedimentation

- Coastal Plain streams are becoming more sand-bottomed and shallower, which is suited to species such as E. pullata, while the species preferring deeper and faster flowing water and more compact sediment are in decline
- Until sediment input can be curbed on a large scale, the fate of many of our declining mussel species, as well as many others, may be sealed

- Habitat related factors should be the priority for conservation of these species
- Individual microhabitat approach using simple physical variables was successful in determining whether rare and threatened species used a different subset of specialized microhabitat than a common species

Acknowledgments

• We thank Evelyn Reatégui-Zirena for field assistance, and Sandy Pursifull, Adam Kaesler (U.S. F&WS, Panama City Field Office), and Jeff Garner (Alabama Department of Conservation and Natural Resources) for ideas associated with this project.

Publications -

- Niraula et al. 2015. Microhabitat associations among three federally threatened and a common freshwater mussel species. American Malacological Bulletin 33(2), 1-9.
- Niraula et al. 2015. Instream habitat associations among three federally threatened and a common freshwater mussel species in a southeastern watershed. Southeastern Naturalist 14 (2), 221-230.
- Niraula et al. In prep. Determination of sediment stability for three federally threatened species of freshwater mussels.